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In this work we combine the framework of the Reduced Basis method (RB) with 
the framework of the Localized Orthogonal Decomposition (LOD) in order to solve 
parametrized elliptic multiscale problems. The idea of the LOD is to split a high 
dimensional Finite Element space into a low dimensional space with comparably good 
approximation properties and a remainder space with negligible information. The low 
dimensional space is spanned by locally supported basis functions associated with the 
node of a coarse mesh obtained by solving decoupled local problems. However, for 
parameter dependent multiscale problems, the local basis has to be computed repeatedly 
for each choice of the parameter. To overcome this issue, we propose an RB approach 
to compute in an “offline” stage LOD for suitable representative parameters. The online 
solution of the multiscale problems can then be obtained in a coarse space (thanks to 
the LOD decomposition) and for an arbitrary value of the parameters (thanks to a suitable 
“interpolation” of the selected RB). The online RB-LOD has a basis with local support and 
leads to sparse systems. Applications of the strategy to both linear and nonlinear problems 
are given.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider parametrized linear elliptic multiscale problems, i.e. we are interested in finding the 
parameter-dependent solution uε(· ; ·) of an equation

−∇ · (aε(x;μ)∇uε(x;μ)
) = f (x;μ) in �,

uε(x;μ) = 0 on ∂�. (1)

Here, μ = (μ1, . . . , μP ) denotes a parameter vector. It is an element of a multidimensional parameter set D ⊂ R
P , where 

P ∈N. The parameter-dependent coefficient matrix aε(x; μ) is assumed to be a multiscale coefficient. It exhibits a continuum 
of different scales, where the finest scale is very small compared to the size of computational domain �. In particular 
aε(x; μ) shows very fast variations that need to be resolved with an extremely fine computational grid. The order of the 
fines scale in our problem is characterized by the abstract quantity 0 < ε � 1. However, we do not need to assign a specific 
value to ε. Due to the requirement that all scales of aε(·; μ) need to be resolved with a computational grid, the problem 
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cannot be tackled by standard methods (such as classical finite element methods) since the computational complexity 
would become prohibitively large. Hence we are interested in finding a way to decrease the computational complexity and 
to distribute the load on several CPUs by introducing fully decoupled local subproblems. Furthermore, we want to avoid 
recomputing local subproblems for every new parameter μ. We are thus looking for (a small number of) representative 
parameters for which accurate local problems and bases are computed and that allow for fast computations for every new 
parameter μ.

Parameter-dependent multiscale problems can for instance arise in applications from material sciences, geophysics or 
hydrology. More specific examples are the prediction of global strain or elasticity properties of fiber reinforced composite 
materials, where the parameters can describe different constellations for the microscopic fibers that are embedded in the 
main material (e.g. their form or density). Another example is the flow in porous media where different permeability 
configurations can be parametrized. For such cases the coefficient aε(·; μ) and the source term f (·; μ) can both depend 
on a large number of parameters μ. It is therefore of strong interest to construct methods that combine the features of a 
multiscale method (to treat the rapid variations in the coefficients) with a reduced basis approach (to treat the dependency 
on a large set of parameters).

There are numerous different methods that are designed to treat the classical (parameter-free) multiscale problems (cf. 
[1,2,9,10,15,19,23–25,33–36,41,42,46,47] and the references therein). In this paper we focus on the localized orthogonal 
decomposition (LOD) introduced in [42]. To handle parameter dependency in an efficient way we will build on the reduced 
basis (RB) approach (cf. [26,40,48–50,53]). The reduced basis method is a model order reduction technique that we describe 
at the end of this section when we describe the idea of the reduced basis localized orthogonal decomposition approach 
(RB-LOD).

Despite the large number of results on multiscale methods and reduced basis approaches there are only few works 
which combine both features. In the context of periodic homogenization this was first studied by Boyaval [13,14] and ex-
tended for more general numerical homogenization problems in [3–6], where the reduced basis finite element heterogeneous 
multiscale method (RB-FE-HMM) has been introduced. The RB-FE-HMM was originally designed to reduce the computational 
complexity of the classical Heterogenous Multiscale Method [19] by interpreting the location of a cell problem as a param-
eter (which is equivalent to the dependency on the coarse variable). With that strategy, precomputed solutions from other 
cell problems can be used to construct reduced basis solution spaces for new cell problems. This method also generalizes 
to additional parameter dependencies such as in (1). A similar approach which also fits into the HMM framework was pre-
sented in [44], where the focus is on optimization problems that are constrained by a parameterized multiscale problem. 
A combination of the RB framework with the multiscale finite element method (MsFEM, see [34]) was proposed by Nguyen 
in [43], model reduction techniques for the MsFEM have also been developed in [20]. Finally, we mention the approach of 
the localized reduced basis multiscale method (LRBMS) proposed in [8,39] and further developed in [38,45]. The main idea 
of the method is to localize global solutions (that were determined for a set of parameters) to the elements of a coarse 
grid. The localization can be simply obtained by truncation and hence the localized solutions can be used as basis functions 
in a global discontinuous Galerkin approach. The Reduced Basis framework can be combined with most of the multiscale 
methods mentioned in the introduction. In this paper we chose the LOD because it has some attractive features compared 
to other approaches that also aim to solve multiscale problems without scale separation. For instance, even though an RB 
Multiscale Finite Element Method (RB-MsFEM, cf. [43]) is computationally less expensive, it suffers from the constrained 
that it requires strong structural assumptions on aε(·, μ) (such as local periodicity). Efficient and reliable methods that do 
not suffer from such a constrained are for instance the approaches proposed by Owhadi and Zhang [46] or Babuška and 
Lipton [10]. The approach by Owhadi and Zhang exploits a so-called transfer property (comparable to a harmonic coordi-
nate transformation) and requires to solve local problems in patches of sizes of order 

√
H| log(H)| to guarantee an optimal 

linear convergence rate in H for the H1-error. Compared to that, the LOD only requires patches with a diameter of order 
H | log(H)|. The method of Babuška and Lipton [10] has a different structure and even smaller patches can be picked. Here 
optimal local approximation spaces are constructed. However, this local construction requires to incorporate the source term 
f (·, μ) by solving additional local problems of the structure −∇ ·(aε(·, μ)∇vε(·, μ)) = f (·, μ). In order to account for this in 
the RB-framework, an affine decomposition of f (·, μ) is required. Furthermore, the costs for the offline phase are increased. 
Compared to that, the LOD-approach involves local spaces that are independent of f , without suffering from a reduction of 
the convergence rates.

In this paper we introduce the reduced basis local orthogonal decomposition (RB-LOD). We briefly summarize the main 
ideas. Consider a coarse triangulation TH and a corresponding set of coarse nodes NH . For any fixed (i.e. parameter inde-
pendent) coefficient aε the LOD is designed to construct a set of (locally supported) multiscale basis functions �MS

z (each of 
them associated with a single coarse node z ∈NH ) so that the discrete space that is spanned by these basis functions yields 
the classical convergence rates in H . The functions �MS

z are obtained from the solution of a local finite element problem 
(in a local space that resolves the microstructure). The coarse triangulation TH does not need to resolve the microstructure 
and can hence be low dimensional. However if the coefficient aε(·; μ) is parameter-dependent then �MS

z (μ) is parameter-
dependent as well and needs to be recomputed again for any new parameter. To overcome this drawback we apply the 
reduced basis method together with a Greedy search algorithm to identify a set of parameters for which we compute �MS

z . 
These solutions can be used to construct affine (reduced basis) spaces V RB

z , for each node z ∈NH .
The computation of the spaces V RB

z takes place in an offline phase (i.e. it is a preprocessing step). The functions in V RB
z

are only locally supported in a small patch around the node z. Once constructed, these reduced basis (multiscale) spaces 
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