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Stochastic effects are often present in the biochemical systems involving reactions and 
diffusions. When the reactions are stiff, existing numerical methods for stochastic reaction 
diffusion equations require either very small time steps for any explicit schemes or 
solving large nonlinear systems at each time step for the implicit schemes. Here we 
present a class of semi-implicit integration factor methods that treat the diffusion term 
exactly and reaction implicitly for a system of stochastic reaction–diffusion equations. Our 
linear stability analysis shows the advantage of such methods for both small and large 
amplitudes of noise. Direct use of the method to solving several linear and nonlinear 
stochastic reaction–diffusion equations demonstrates good accuracy, efficiency, and stability 
properties. This new class of methods, which are easy to implement, will have broader 
applications in solving stochastic reaction–diffusion equations arising from models in 
biology and physical sciences.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Complex patterns can be extensively found in nature, from the skin of zebrafish to the disposition of feather buds in 
chicks and hair follicles in mice. Often, those patterns are created by biochemical reactions along with diffusions of the 
molecules in a cellular or multi-cellular systems [1]. Such biological systems, which may be described in reaction–diffusion 
equations, are constantly subjected to stochastic effects such as noises and environmental perturbations. The stochastic 
effects on the biochemical reactions at the single-cell level can result in heterogeneous responses of cellular populations 
and influence their behaviors [2]. Previous studies on stochasticity reveal the adaptation of biological systems to noise, 
which can be characterized by the systems’ strategies to combat noise, whether by attenuating or exploiting it [2,3]. For 
example, spatial stochastic effects help to either prompt the tight localization of proteins or enhance the response to the 
directional change of a moving pheromone input, resulting in a more robust cell polarization [4]; and the boundary of 
gene expression domains is sharpened as a result of gene-switching prompted by intracellular noise [5]. It has become 
increasingly important to incorporate these stochastic effects into the reaction–diffusion equations for better understanding 
of biological systems.

One can describe a biological system in terms of the following stochastic reaction–diffusion equations:

∂U

∂t
= a

∂2U

∂x2
+ f (U ) + g(U )Ẇ (x, t) (1)
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where Ẇ (x, t) is a standard two-dimensional Wiener process.
One typical way of solving Eq. (1) numerically is to apply central difference first to the diffusion and then use the 

temporal explicit scheme to solve the subsequent system [6], such as using the explicit Euler method [7] or the two, 
three, and four-stage explicit Runge Kutta schemes for the system containing additive noise and one-dimensional Wiener 
process in [8]. Another common approach is using the Galerkin projection of the stochastic partial differential equation 
(SPDE) and then applying the numerical scheme to a finite-dimensional version of the SPDE. For example, Exponential Time 
Differencing (ETD) scheme may be applied to the Galerkin projection of the SPDE [9,10]. One other such example is the 
Lord and Rougemont scheme, which is derived through Galerkin projection and an integrating factor approach [11]. This 
scheme is most effective for SPDE with Gevrey regularity, and more improvement may be made on such schemes by taking 
advantage of the Itô–Taylor expansion [11].

While explicit temporal schemes may be directly implemented for various spatial discretization, including finite element 
and Galerkin methods [12], to deal with the stability constraint associated with the diffusions, one can treat the diffusion 
term implicitly, while treating other terms explicitly [6] such as implicit Euler and Crank–Nicolson schemes [7]. Higher 
order methods [13] can be achieved using Galerkin projection and the linear-implicit versions of strong Taylor schemes 
[10]. Non-uniform time discretization on Brownian motion can also be obtained for implicit Euler scheme [14].

Stochastic stiffness arises from large differences in the magnitudes of Lyapunov exponents [15], resulting in the presence 
of different time scales. As in the deterministic case, explicit methods face step-size constraint when used to solve stiff 
stochastic systems [16]. The time-step constraint can be improved with the modification of the stochastic term by adding 
more terms from the Itô–Taylor expansion for higher order of accuracy and stability. One of the most well-known schemes 
stemmed from this construction is the Milstein scheme [15]. Treating the stochastic term implicitly is also one of the popular 
approaches [17–20], albeit computationally expensive. Hence, a class of explicit methods known as Chebyshev methods are 
derived, which have better mean-square stability than explicit Euler method and are not as computationally expensive as 
implicit methods [21]. A combination of different numerical schemes into one method can also be seen, such as the case 
of the Composite Euler scheme [22]. For this scheme, at each temporal step, the stochastic differential equation is either 
solved by implicit Euler method or semi-implicit Euler method. The Composite method has similar order of convergence 1/2 
to the Euler Maruyama method but better stability.

Most of the methods mentioned so far are derived to combat the stochastic stiffness through the improvement of the 
stochastic term, which can be costly and not as effective if the stiffness only occurs in the deterministic term. In such case, 
methods that treat the deterministic term implicitly while keeping an explicit treatment of the stochastic term are preferred 
[18]. Here, we propose a new approach to the problem of stiffness caused by the deterministic term, more specifically the 
reaction term in Eq. (1). The approach is based on the semi-Implicit Integration Factor (IIF) methods [23–26], which has 
been found to be effective for the stiff reaction–diffusion equations with better stability constraints imposed on the time 
steps associated with both reaction and diffusion. In this approach, the time-step constraint for the diffusion term arising 
due to the inverse of the eigenvalues of the diffusion matrix, which can be large in magnitude, is resolved by treating the 
linear diffusion term exactly using Integration Factor (IF) methods. Such treatment results in an exponential function of 
the diffusion term and an integral of the nonlinear reaction term, which is then treated using implicit approach through 
the Lagrange interpolation to deal with its stiffness. Appropriate choices of approximation schemes lead to decoupling on 
the treatment for the diffusions and reactions such that one only needs to solve nonlinear systems with the size of the 
original PDEs. The IIF methods also have exceptional stability properties and its second-order version is absolutely stable. 
For higher-dimensional problems, the compact IIF (cIIF) method [24] is a great improvement on computational efficiency 
without altering the stability properties of the IIF methods [23].

In this paper, we exploit the simple structure of the IIF methods as well as their desirable stability properties and 
efficiency for solving the system in Eq. (1). Because of the nice decoupling properties in the IIF method, we will treat the 
deterministic diffusion and reaction terms in a similar fashion [23], while dealing with the stochastic term explicitly as in 
the Euler Maruyama method [27]. We compare this approach with similarly constructed schemes whose main difference 
is in the treatment of the deterministic part of the equation, which can be approximated using ETD, Crank–Nicolson, or 
Implicit Euler methods. When all of the properties such as order of accuracy, mean errors, and stability region are taken 
into consideration, the new approach shows many advantages. We also take advantage of the low computational cost of 
the cIIF methods to similarly construct a stochastic method that can be applied to higher-dimensional problems. The paper 
is organized as followed. We first present the construction of the method for systems with additive noise or multiplicative 
noise, along with linear stability analysis and their comparisons with several other methods. Next, we compare the new 
method with other methods on linear SODEs and SPDEs on their orders of accuracy and stability constraints. Then, we use 
this approach to study a nonlinear activator–substrate system of two diffusion species and lastly, make our conclusion.

2. Implicit integration factor methods

2.1. Construction of general method

We consider the stiff reaction–diffusion equation with spatial white noise below:

∂U

∂t
= a

∂2U

∂x2
+ f (U ) + g(U )

∂2W

∂x∂t
(2)
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