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An entropy-bounded Discontinuous Galerkin (EBDG) scheme is proposed in which the 
solution is regularized by constraining the entropy. The resulting scheme is able to stabilize 
the solution in the vicinity of discontinuities and retains the optimal accuracy for smooth 
solutions. The properties of the limiting operator according to the entropy-minimum 
principle are proofed, and an optimal CFL-criterion is derived. We provide a rigorous 
description for locally imposing entropy constraints to capture multiple discontinuities. 
Significant advantages of the EBDG-scheme are the general applicability to arbitrary 
high-order elements and its simple implementation for multi-dimensional configurations. 
Numerical tests confirm the properties of the scheme, and particular focus is attributed to 
the robustness in treating discontinuities on arbitrary meshes.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The stabilization of solutions near flow-field discontinuities remains an open problem to the discontinuous Galerkin (DG) 
community. Considerable progress has been made on the development of limiters for two-dimensional quadrilateral and 
triangular elements. These limiters can be categorized into three classes. Methods that limit the solution using information 
about the slope along certain spatial directions [1,2] fall in the first class. The second class of limiters extends this idea by 
limiting based on the moments of the solution [3,4], and schemes in which the DG-solution is projected onto a WENO [5–7]
or Hermit WENO (HWENO) [8] representation fall in the last category. Although these limiters show promising results 
for canonical test cases on regular elements and structured mesh partitions, the following two issues related to practical 
applications have not been clearly answered:

• How can discontinuous solutions be regularized on multi-dimensional curved high-order elements?
• How can non-physical solutions that are triggered by strong discontinuities and geometric singularities be avoided?

The present work attempts to simultaneously address both of these questions.
Recently, positivity-preserving DG-schemes have been developed for the treatment of flow-field discontinuities, and rel-

evant contributions are by Zhang and Shu [9–11]. The positivity preserving method provides a robust framework with 
provable L1-stability, preventing the appearance of negative pressure and density. Resulting algorithmic modifications are 
minimal, and these schemes have been used in simulations of detonation systems with complex reaction chemistry [12,13].
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Motivated by these attractive properties, the present work aims at developing an algorithm that avoids non-physical so-
lutions on arbitrary elements and multi-dimensional spatial representations. The resulting scheme that will be developed in 
this work has the following properties: First, by invoking the entropy principle, solutions are constrained by a local entropy 
bound. Second, a general implementation on arbitrary elements is proposed without restriction to a specific quadrature 
rule. Third, the entropy constraint is imposed on the solutions through few algebraic operations, thereby avoiding the com-
putationally expensive inversion of a nonlinear system. Fourth, a method for the evaluation of an optimal CFL-criterion is 
derived, which is applicable to general polynomial orders and arbitrary element types.

The remainder of this paper has the following structure. The governing equations and the discretization are summarized 
in the next two sections. The entropy-bounded DG (EBDG) formulation is presented in Section 4, and the derivation of the 
CFL-constraint and the limiting operator are presented. This analysis is performed by considering a one-dimensional setting, 
and the generalization to multi-dimensional and arbitrary elements is presented in Section 5. Section 6 is concerned with 
the evaluation of the entropy-bounded DG-scheme, and a detailed description of the algorithmic implementation is given in 
Section 7. The EBDG-method is demonstrated by considering several test cases, and the accuracy and stability are examined 
in Section 8. The paper finishes with conclusions.

2. Governing equations

We consider a system of conservation equations,

∂U

∂t
+ ∇ · F = 0 in � , (1)

where the solution variable U : RNd ×R→ R
Nv and the flux term F :RNv → R

Nv ×Nd . Here, Nd denotes the spatial dimension 
and Nv is the dimension of the solution vector. For the Euler equations, U and F take the form:

U(x, t) = (ρ,ρu,ρe)T , (2a)

F(U) = (ρu,ρu ⊗ u + pI, u(ρe + p))T , (2b)

where t is the time, x ∈ R
Nd is the spatial coordinate vector, ρ is the density, u ∈ R

Nd is the velocity vector, e is the specific 
total energy, and p is the pressure. Eq. (1) is closed with the ideal gas law:

p = (γ − 1)

(
ρe − ρ|u|2

2

)
, (3)

in which γ is the ratio of specific heats, which, for the present work, is set to a constant value of γ = 1.4. Here and in the 
following, we use | · | to represent the Euclidean norm. With this, we define the local maximum characteristic speed as:

ν = |u| + c with c =
√

γ p

ρ
, (4)

where c is the speed of sound.
Because of the presence of discontinuities in the solution of Eq. (1), we seek a weak solution that satisfies physical 

principles. This is the so-called entropy solution. By introducing U as a convex function of U with U : RNv → R, Lax [14]
showed that the entropy solution of Eq. (1) satisfies the following inequality:

∂U
∂t

+ ∇ ·F ≤ 0 , (5)

where F :RNv → R
Nd is the corresponding flux of U . The consistency condition between Eqs. (1) and (5) requires [14]:(

∂U
∂U

)T
∂F

∂U
= ∂F

∂U
. (6)

The weak solution of Eq. (1) that satisfies this additional condition for the entropy–entropy flux pair (U , F) is called an 
entropy solution. With this definition, Eq. (5) is commonly called entropy inequality or entropy condition, and U is called 
entropy function. A familiar example for gas-dynamic applications is to relate U to the physical entropy s with:

s = ln(p) − γ ln(ρ) + s0 , (7)

where s0 is the reference entropy. The corresponding definitions for the entropy function and entropy flux in the context of 
the Euler system are [15]:

(U,F) = (−ρs,−ρsu) . (8)

Note that Eq. (7) directly provides a constraint on the positivity of pressure p and density ρ .
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