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A non-iterative direct forcing immersed boundary method is presented for the strongly-
coupled simulations of fluid–solid interactions. While it retains many advantages of the 
immersed boundary framework by Yang and Stern (2012) [30], especially the simplified 
field extension strategy for moving boundary treatment and the pointwise integration of 
hydrodynamic force using the momentum forcing term, the present approach improves 
upon the previous method in several aspects including optimized computational cost 
for a strong coupling scheme, reduced algorithm complexity for a straightforward 
implementation, and enhanced numerical stability for low density ratio problems. Central 
to these improvements is a simple intermediate step in which the velocity fields around 
solid bodies are predicted on temporary non-inertial reference frames attached to moving 
solid bodies in a one-to-one manner. This step enables the explicit inverse of the 
implicit equations for rigid body dynamics, thus rendering unnecessary the previous 
predictor–corrector scheme for iteratively adjusting the displacements and velocities of 
the immersed bodies until reaching a convergence. In addition, a simple, generalized 
procedure is developed to obtain the interpolation coefficients in a local reconstruction 
stencil explicitly from the geometric relationship. For verification and validation, the 
vortex-induced vibration of a circular cylinder and the rotational galloping of a rectangular 
body are considered first; then several particulate flow problems, including settling and 
buoyant particles of low density ratios, a settling particle in a small container, and the 
kissing–drafting–tumbling problem of two settling particles, are studied. The agreement 
between the present results and the reference data in the literature is excellent. An overall 
second-order accuracy of the algorithm is verified in two systematic grid convergence tests. 
The present idea can be easily applied to similar methods for achieving a strong coupling 
scheme on top of a weak one with a nominal increase in the computational cost. Details 
of the algorithm are provided to facilitate its implementation in other solvers using non-
boundary-conforming grids.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The immersed boundary method has long been established as a versatile and cost-effective approach for fluid–structure 
interaction (FSI) problems since its introduction by Peskin in the 1970s [17,18]. It is very attractive in that a simple forc-
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ing term is added to the momentum equation to represent the effect of a complex immersed boundary on the fluid flow, 
without modifying the regular finite difference schemes on a fixed Cartesian grid. In the conventional immersed boundary 
method [19], a constitutive relation for the material elasticity is required to determine the forcing term according to the 
structure deformations. Structures with no/prescribed deformations can be modeled using very stiff springs; but large stiff-
ness values, which are usually determined ad hoc, have some numerical stability implications. In the so-called direct forcing 
approach [15], instead of making use of a constitutive relation, the momentum forcing function was derived by directly 
injecting the velocity boundary condition at the immersed boundary into the discrete-time momentum equation. Essentially 
it can be viewed as a local solution reconstruction procedure with which the desired boundary conditions is imposed on the 
immersed boundary, and the explicit appearance of a forcing term in the momentum equation was not even required [6]. 
This opened up great opportunities for developing algorithms of various features targeted for specific improvements as well 
as diversified applications (see, for example, [12,23,1] among others), since the velocity boundary conditions are ubiquitous 
in numerical simulations of fluid flows regardless of the boundary properties (rigid, deforming, or elastic) and the motion 
characteristics (stationary, prescribed, or predicted).

It should be noted that, in Peskin’s method, the momentum forcing from an immersed boundary represented by a 
Lagrangian mesh is formulated as a Dirac delta function, which is usually replaced by a smooth approximation in the 
actual discretization on the underlying Eulerian grid. For a moving boundary problem, ideally, a discrete delta function can 
smoothly spread out the boundary force onto the surrounding Eulerian grid points without incurring spurious jumps in the 
flow field, although the smoothing process results in a blurring fluid–solid interface. On the contrary, in a direct forcing 
approach [6], the velocity boundary conditions are imposed on grid points adjoining the immersed boundary and satisfied 
“exactly” as for a boundary-conforming method if the grid points coincide with the immersed boundary. This sharp interface 
treatment produces temporal and spatial jumps in the momentum forcing when the immersed boundary moves across the 
fixed grid points. Without an appropriate handling, these jumps can result in spurious oscillations of hydrodynamic forces 
on the immersed boundary, which could be disastrous for FSI problems sensitive to the variations in the hydrodynamic 
forces. Actually, this issue was a main motivation in [24] to resort to discrete delta functions for the smooth transfer of 
velocity and forcing information between the Eulerian and Lagrangian locations. Similar Eulerian–Lagrangian coupling ideas 
in the direct forcing framework were also presented in [8,34]. Uhlmann’s method has been widely used in particulate 
flow simulations and inspired quite some follow-up work for improvements or extensions to general FSI problems, such 
as [25,33,20,10] among others. In particular, a major limitation of [24] restricting the applicable range of density ratios 
(ρs/ρ f � 1.2 for spherical particles with ρs and ρ f the solid and fluid densities, respectively) was mitigated to cover cases 
with ρs/ρ f � 0.3 in [10]. Unfortunately, most if not all of these improvements or extensions came at the price of additional 
algorithm complexity and increased computational cost, and hardly addressed several inherent drawbacks of the discrete 
delta function formulations. For instance, depending on the width of the support of the delta function on the Eulerian 
grid, the sharpness of the fluid–solid interface is weakened and the computational cost of the Eulerian–Lagrangian coupling 
process is augmented correspondingly; also, some ad hoc treatments may be necessary if the Eulerian stencils from two 
different structures overlap [10]. Furthermore, the Lagrangian markers on the immersed boundary are usually required to 
be distributed evenly with a resolution close to that of the local Eulerian grid (a finer surface mesh will increase the cost, 
instead of the accuracy) [24], even for stationary geometries or structures with prescribed motions. This could be very 
difficult, if not impossible, for cases with complex geometries or thousands/millions of particles of arbitrary shapes.

Due to the abovementioned drawbacks, it is still preferred to avoid the dependence on a discrete delta function as the 
kernel of fluid–structure (i.e., Eulerian–Lagrangian) coupling in many applications by retaining the sharp interface property 
of the original direct forcing approach [6]. It should be pointed out that the validation in [6] was mainly concerned with 
stationary immersed boundaries, although a moving boundary problem was demonstrated without force information. Thus, 
the implications of an immersed boundary moving on a fixed grid in the framework of a fractional-step method were 
not addressed in [6]. Actually, a close observation in [26] on the role switching of the grid points around the immersed 
boundary revealed that, when a grid point with a reconstructed solution at the previous time step becomes a normal fluid 
point at which the governing equations are solved, the non-physical field information from the solid phase may enter the 
system via the derivatives evaluated at this point. Depending on the deviation from the physical values, these contaminated 
derivatives may produce spurious force oscillations of various amplitudes when the original method in [6] is applied to 
moving boundary problems. Therefore, an intuitive remedy of this problem is to exclude the involvement of those points 
from the solid phase in evaluating the derivatives at such a point. But the penalty will be the loss of the regularity of the 
discretization stencils for individualizing the treatments in a case-by-case manner. On the contrary, a field extension strategy 
was proposed in [26] to recover the physical values of the contaminated derivatives by extending the flow field into the 
solid phase through an extrapolation procedure. The field extension can be performed at the end (or equally, the beginning) 
of each time step by directly modifying the solution field without tangling with the discretization stencils. Several moving 
boundary problems ranging from laminar to turbulent flows were carried out to demonstrate the accuracy of this simple 
approach in [26]. The extension to FSI problems with multiple rigid bodies using a strong coupling predictor–corrector 
scheme in [27] further verified the effectiveness of the field extension strategy in tackling the issue of spurious force 
oscillations.

An important feature in [26,27] is that the hydrodynamic force was calculated through a surface integration on all La-
grangian elements; thus there was still a resolution requirement of the surface mesh, e.g., close to that of the local Eulerian 
grid, in order to obtain an accurate force evaluation. Recently, Yang and Stern [30] substantially simplified the field extension 
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