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This paper presents spatially averaged Navier–Stokes equations for modelling macro-scale 
flow in devices with periodic solid structures such as fin and tube arrays. The properties 
of steady and unsteady periodically developed flow are investigated to assess different 
strategies for determining the closure terms in the macro-scale flow equations. It is shown 
that the spatial averaging technique requires an appropriate weighting function to ensure 
that the closure terms are spatially constant for periodically developed flow. Moreover, 
through an appropriate choice of the weighting function, the closure terms can be obtained 
by solving a local closure problem on a unit cell of the periodic structures. The theoretical 
framework of this paper is applied as multi-scale modelling technique for flow through 
a cylindrical tube array. This case study illustrates the advantages of the weighted spatial 
averaging technique over the volume averaging technique.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In heat exchangers, heat sinks, fuel cell systems as well as chemical reactors and many other applications, examples 
of fluid flow and heat transfer through spatially periodic solid structures are omnipresent. In heat transfer devices, for 
instance, periodic fin surfaces are employed to enhance heat transfer. For design of these devices, a detailed analysis of the 
flow and temperature fields through direct numerical simulation is not feasible, because of the enormous computational 
cost associated with simulating all the detailed transport phenomena near the solid–fluid interface.

In order to reduce computational cost, macro-scale models based on the volume averaging technique (VAT) for porous 
media [1] have been applied for simulating the flow and heat transfer in devices with periodic solid structures. These 
macro-scale models describe the features of the volume-averaged flow field and temperature over the global device scale 
and omit the need of investigating the local flow details over the entire flow domain.

Kuwahara, Nakayama et al. [2] used the VAT framework to correlate the macro-scale pressure gradient and convective 
heat transfer coefficient for a uniform macro-scale flow through a bank of isothermal square rods. Their correlations are 
governed by the Darcy–Forchheimer law for porous media and take the effect of macro-scale flow direction, Reynolds 
number and porosity into account. The laminar flow and heat transfer in a periodic array of square rods was further 
investigated by Alshare et al. [3], who correlated the volume averaged velocity and pressure gradient in steady periodically 
developed flow via apparent permeabilities. The authors also examine the effect of unsteady flow on the ensemble averaged 
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Nomenclature

b′
fs weighted interfacial force defined in 

Eq. (16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [N/m3]
C differentiability class
d cylinder/tube diameter . . . . . . . . . . . . . . . . . . . . [m]
e unit vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [–]
f gravitational body force distribution . . [N/m3]
g gravitational acceleration . . . . . . . . . . . . . . . [m/s2]
G(n)

m geometrical tensor defined in Eq. (40)
I unit tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [–]
l( j) lattice vector of unit cell . . . . . . . . . . . . . . . . . . [m]
l j lattice size (length lattice vector) of unit 

cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m]
K m weighted permeability tensor defined in 

Eq. (52) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m2]
� characteristic length for micro-scale . . . . . . [m]
L characteristic length for macro-scale . . . . . . [m]
M ′ weighted momentum dispersion source 

defined in Eq. (16) . . . . . . . . . . . . . . . . . . . . . [m/s2]
m normalized weighting function . . . . . . . . . [m−3]
N number of cylindrical tubes . . . . . . . . . . . . . . . . [–]
p pressure distribution as in Eq. (2) . . . . . . . . [Pa]
�p pressure drop over cylinder array . . . . . . . . [Pa]
nfs normal vector associated with fluid–solid 

interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [–]
r position vector (locating point within 

averaging domain) . . . . . . . . . . . . . . . . . . . . . . . . . [m]
rm characteristic size of the averaging 

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m]
Re Reynolds number
s0 position parameter first cylinder . . . . . . . . . . [m]
sN position parameter last cylinder . . . . . . . . . . [m]
sx horizontal cylinder spacing . . . . . . . . . . . . . . . . [m]
sy vertical cylinder spacing. . . . . . . . . . . . . . . . . . . [m]
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [s]
u velocity distribution as in Eq. (2) . . . . . . . [m/s]
x position vector (locating centroid of averaging 

domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m]

Greek symbols

δfs Dirac distribution associated with fluid–solid 
interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m−1]

ε f volume averaged fluid indicator, porosity of 
solid structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [–]

εfm weighted spatially averaged fluid indicator, 
weighted porosity of solid structure . . . . . . . [–]

εsm weighted spatially averaged solid indicator [–]
φ distribution of a tensor quantity as in Eq. (1)
γ f fluid indicator defined in Eq. (5) . . . . . . . . . . . [–]
γs solid indicator defined in Eq. (5) . . . . . . . . . . . [–]
�fs fluid–solid interface
�̄fs fluid–solid interface within averaging domain
�m weighted momentum coefficient tensor 

defined in Eq. (53) . . . . . . . . . . . . . . . . . . . . . . . . . [–]
μ dynamic viscosity of fluid . . . . . . . . . . . . . . . [Pa s]
ρ f constant fluid density . . . . . . . . . . . . . . . . [kg/m3]
	 continuum/device domain
	unit unit cell domain
	̄ averaging domain
τ viscous stress tensor

Subscripts

f restricted to the fluid
ref used as reference
s restricted to the solid
unit unit cell
x vector component along the x-direction
xx first diagonal tensor component
yy second diagonal tensor component

Superscripts

+ dimensionless quantity
∼ deviation part defined in Eq. (6)
ᵀ transpose of tensor

pressure gradient and provide correlations to incorporate thermal dispersion. In subsequent work [4], Alshare et al. applied 
VAT to simulate the macro-scale velocity and temperature distributions in a serpentine heat exchanger, using the closure 
correlations from their previous work. Their study discusses in depth the accuracy of the VAT model in comparison to direct 
numerical simulation. Horvat and Catton [5] modelled unidirectional macro-scale flow and heat transfer through a heat 
sink consisting of pin–fins on a solid base plate. Their numerical VAT model contains two closure coefficients to include 
local transport phenomena at the pin–fin surface: the local drag and local heat transfer coefficient, which are obtained from 
experimental correlations. In a related study [6], Horvat and Mavko calculate the local drag and heat transfer coefficient 
for a pin–fin element via a separate model based on periodical temperature and flow equations. For both studies the VAT 
model predicted Nusselt number and drag coefficient of the whole pin–fin section in good agreement with experimental 
results. Hierarchical VAT models for turbulent flow and heat transfer in heat sinks with circular and square pin–fins were 
developed by Catton [7]. Recently, VAT models were also applied for turbulent flow in circular tube–fin heat exchangers [8]
and heat sinks with elliptic scale-roughened surfaces [9].

Although VAT models have proven their merit for describing transport processes in certain types of disordered porous 
media as one encounters in soils and aquifers, the volume averaging technique does not guarantee adequate modelling of 
flow and heat transfer in devices with spatially periodic structures, such as fins or tubes. The reason is that the volume 
averaged macro-scale models for porous media, which neglect the spatial moments of the solid structure, loose accuracy for 
systems in which the solid–fluid interface is exactly spatially periodic [10]. Therefore, we propose an alternative multi-scale 
modelling approach for simulating flow through periodic solid structures. The approach is based on a weighted spatial 
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