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We develop an efficient algorithm for a spatially inhomogeneous matrix-valued quantum 
Boltzmann equation derived from the Hubbard model. The distribution functions are 
2 × 2 matrix-valued to accommodate the spin degree of freedom, and the scalar quantum 
Boltzmann equation is recovered as a special case when all matrices are proportional to 
the identity. We use Fourier discretization and fast Fourier transform to efficiently evaluate 
the collision kernel with spectral accuracy, and numerically investigate periodic, Dirichlet 
and Maxwell boundary conditions. Model simulations quantify the convergence to local 
and global thermal equilibrium.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Boltzmann’s kinetic theory is widely used to describe the dynamics of rarified gases. Immediately after the discovery of 
quantum mechanics, a modification of the classical Boltzmann equation to take quantum interactions into account has been 
proposed by Nordheim [12] (with a more systematic derivation by Peierls [13]), and by Uehling and Uhlenbeck [18,19]. 
With the inclusion of quantum mechanical effects into the collision operator, the quantum Boltzmann equation has many 
applications, e.g., for the kinetic description of Bose–Einstein condensation [15,16], spintronics and decoherence theory in 
quantum computing [2,14,20,22], or kinetic modeling of semiconductor devices [9].

In recent works, starting from the Hubbard model in the weak interaction limit, a matrix-valued Boltzmann equation 
has been derived [4–6] for the spatially homogeneous setting without advection term. To describe spatially inhomogeneous 
systems, one combines the Boltzmann transport equation with the collision term derived in [4]:

∂t W + vx ∂xW = C [W ] − i[�B · �σ , W ], (1)

where the state variable W is the Wigner distribution of the spin-density matrix, �B is an external magnetic field, �σ are 
the Pauli matrices, and the collision term C [W ] will be specified below in Section 2. We emphasize that while the form of 
the equation follows the usual quantum Boltzmann equation, the collision term is quite different (which is systematically 
derived from a many-body quantum mechanics model), and the matrix-valued W distinguishes the equation from the usual 
kinetic equations.
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The focus of this paper is devising an efficient algorithm for solving (1). Our goal in this work is twofold: First, we 
would like to develop a numerical scheme that systematically converges to the true solution; for that purpose, we use a 
spectral method in the velocity variable. The collision operator, albeit much more complicated than for the usual classical or 
scalar quantum Boltzmann equation, can be efficiently calculated using Carleman representation and fast Fourier transforms. 
Second, we want to investigate non-trivial boundary conditions, like Dirichlet and Maxwell boundary conditions, and the 
effect of external magnetic fields. These developments should lead to a better understanding of the physics modeled by 
these equations.

Kinetic equations are traditionally solved by Monte Carlo methods (also known as particle methods). In recent years, 
the development of efficient real space or Fourier space methods to solve Boltzmann equations has been a very active 
research area. In particular, the line of research initiated by [11] and further developed in [3,7] is especially relevant for 
our approach. The paper [11] proposed a fast algorithm for computing the Boltzmann collision kernel based on Fourier 
discretization, and [7] further improved the efficiency of the algorithm. The method we develop in this work for the collision 
operator of the matrix-valued Boltzmann equation is closely related, albeit with some differences: (a) Since we are dealing 
with collision terms originating from quantum mechanics, the microscopic energy is not necessarily conserved (see the 
effective Hamiltonian in Eq. (6) below); some new ideas are required to treat the resulting terms. (b) To evaluate double 
convolutions exactly using fast Fourier transforms, we use a double padding approach to avoid aliasing issues. As a result, 
while maintaining the spectral accuracy, the scheme also nicely respects the conservation law of the continuous equation. 
Further details can be found in Section 3.

A numerical algorithm for the spatially homogeneous matrix-valued Boltzmann equation in one dimension was consid-
ered before in [5,6], which calculates the collision term directly using numerical quadrature. A subsequent work by one 
of the authors [10] considers a lattice Boltzmann method (LBM) for the spatially inhomogeneous equation with periodic 
boundary conditions, which can be understood as a discrete velocity method with very few velocity grid points. Due to the 
small number of grid points, the accuracy of the numerical result compared to the original equation is not guaranteed. In 
contrast to that, the method proposed here systematically approximates the original equation as we refine the grid.

Considering the matrix-valued Boltzmann equation, it is useful to represent the spin-density Wigner distribution in the 
basis of Pauli matrices. In fact, the formulas for the collision terms are more compact in the new representation, which 
might be of independent interest for understanding the physics and mathematics of the equation.

The rest of the paper is organized as follows. We introduce the spatially inhomogeneous matrix-valued Boltzmann equa-
tion and its associated boundary conditions in Section 2. We will focus on the development of the fast algorithm for the 
collision operator in Section 3. To deal with the spatial degree of freedom, we use the finite volume method and a parallel 
implementation based on MPI; this is discussed in Section 4. We show some numerical results for validating the algorithm 
and for exploring interesting physical phenomena in Section 5. Finally we wrap up the paper with some conclusive remarks 
in Section 6.

2. The spatially inhomogeneous matrix-valued Boltzmann equation

The starting point for the derivation [4] of the matrix-valued Boltzmann equation is the Hubbard model with a weak 
pair potential λV such that 0 < λ � 1. Consider a spin- 1

2 Fermi field with annihilation operators as(x), x ∈ Z
d , s ∈ {↑, ↓}, 

obeying the anti-commutation relations{
as(x)†,as′(x′)

} = δxx′δss′ ,
{

as(x),as′(x′)
} = 0, and

{
as(x)†,as′(x′)†} = 0,

where A† denotes the adjoint operator of A. Using the second quantization formulation, the (many-body) Hamiltonian of 
the Hubbard system is then given by

H =
∑

x,y∈Zd

∑
s∈{↑,↓}

α(x − y)as(x)†as(y) + 1
2

∑
x∈Zd

∑
s,s′∈{↑,↓}

λV (x − y)as(x)†as(x)as′(y)†as′(y). (2)

Here the first term on the right hand side in the Hamiltonian describes the hopping from site y to x with α the hopping 
amplitude, and the non-quadratic second term gives the interactions of two excitons with V the interaction potential. 
The grid Zd must be distinguished from the spatial dimension considered below (in some sense, the grid Zd is on 
the microscopic scale while the spatial inhomogeneity is introduced on a mesoscopic scale). In Fourier representation, 
the time-dependent (Heisenberg picture) field operators âs(t, v) adhere to the initial (t = 0) anti-commutation relation 
{âs(v)†, ̂as′ (v ′)} = δss′ δ(v − v ′), with v , v ′ denoting velocity variables. As discussed in [4], the time-dependent average 
Wigner matrix W defined by〈

âs(t, v)† âs′(t, v ′)
〉 = δ(v − v ′)W ss′(t, v) (3)

will approximately satisfy a Boltzmann kinetic equation ∂t W = C [W ] for times up to order λ−2. Here, as in the Heisenberg 
picture, the average 〈·〉 is taken with respect to the initial state of the system. The effective Boltzmann equation is much 
easier to solve compared to the original quantum many-body system, which is an extremely high-dimensional problem.

Augmenting the Boltzmann equation with the usual transport term for the spatially inhomogeneous setting and including 
an external magnetic field �B , one arrives at Eq. (1), where �σ = (σ1, σ2, σ3) are the Pauli matrices:
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