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We address the conservation of angular momentum for cell-centered discretization of 
compressible fluid dynamics on general grids. We concentrate on the Lagrangian step 
which is also sufficient for Eulerian discretization using Lagrange+Remap. Starting from 
the conservative equation of the angular momentum, we show that a standard Riemann 
solver (a nodal one in our case) can easily be extended to update the new variable. This 
new variable allows to reconstruct all solid displacements in a cell, and is analogous to a 
partial Discontinuous Galerkin (DG) discretization. We detail the coupling with a second-
order Muscl extension. All numerical tests show the important enhancement of accuracy 
for rotation problems, and the reduction of mesh imprint for implosion problems. The 
generalization to axi-symmetric case is detailed.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This work intends to contribute to a long lasting CFD debate which is the enhancement of the accuracy of compressible 
fluid solvers for vortical flow. In our case we concentrate more on cell-centered Lagrangian compressible schemes on moving 
grids. But as demonstrated by the numerical results, the proposed approach is also valid for Eulerian calculations on a fixed 
grid using a Lagrange+Remap procedure.

A seminal and inspirational work is the one of Dukowicz and Meltz [19] where the authors analyze the spurious vorticity 
errors of the Lagrangian Caveat scheme [1] and develop a procedure to correct these errors. It is in our mind representative 
of situations where vorticity of the numerical flow is seen as a potential source of problems, that must be controlled. Such 
kind of procedure has also been developed in [9] for staggered schemes (the curl-Q pseudo-viscosity). A general review of 
vorticity in Finite Volume schemes is in [36]. See also [39].

In our case we consider that the situation of cell-centered Lagrangian schemes has somewhat changed since the 
Dukowicz–Meltz contribution. Cell-centered Lagrangian are now becoming a mature ensemble of techniques, owing to the 
preservation of the GCL (geometric conservation law) and the compatibility with the entropy principle which is rendered 
possible by the use of nodal-based Riemann solvers instead of the standard edge-based solvers used in [19]. It started in 
[16,17], and was developed in [31]. The numerical formalism of the general multi-D Glace scheme is developed in [10]. The 
Eucclhyd formalism on 2D grids was later proposed in [32]. The difference between the nodal Riemann solvers of Glace 
and Eucclhyd is quite small, similar in a sense to different quadrature formulas in the theory of Finite Element Methods for 
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elliptic equations. We quote [11,6,39,2,4] for recent related works for compressible Lagrangian fluid dynamics. It has also 
been used to develop artificial viscosities for staggered schemes [7,28]. Extension to elastoplastic solvers has been recently 
performed in a series of papers: it started with [25] where the form of the nodal elastic Riemann solver is defined in the 
context of very general hyper-elastic models, then later extended in [33,8] for simplified hypoelastic models. Definition of a 
stabilization procedure named subzonal entropy is proposed in [15]. A proof of weak consistency is given in [14]. Most of 
these methods have a wide domain of efficiency in terms of stability and accuracy, the main reason being the compatibility 
with the GCL and with the entropy principle. Moreover cell-centered Lagrangian schemes are naturally adapted to remap-
ping procedure which means that any stability issue of the mesh can be addressed using ALE (Arbitrary Lagrange Euler), 
still maintaining the conservation properties and the accuracy for shock calculations, see for example [20,13,6]. All these 
Lagrangian schemes can be run in a purely Eulerian mode by using Remap at every time steps. Based on these advances 
we consider that the time is less to consider that vorticity is a spuriously that must be controlled or eliminated (another 
drawback being of course that physical vorticity might be treated like spurious vorticity), but more to enhance the accuracy 
of flow with strong vortical parts.

Our analysis starts from a well known physical principle which is that angular momentum

w = u ∧ x (1)

is solution of a conservation law

∂t(ρw) + ∇ · (ρu ⊗ u ∧ x) + curl(px) = 0. (2)

At the analytical level this law is redundant with the inertial momentum equation

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = 0. (3)

But at the numerical level, many basic simulations show without any doubt that angular momentum is far to be preserved 
by standard cell-centered flow solvers on general grids (situation is less severe on Cartesian fixed grids). This is why we 
concentrate in this work on the development and analysis of a general numerical method for the preservation of the 
angular momentum variable (1). We will show that angular momentum discretization can be understood as a special DG 
discretization of (3), which seems to us a new result with respect to the literature [29,40–42]. We notice also that the 
vorticity is easily recovered from the knowledge of angular momentum and of the inertial momentum. Let x0 be a given 
point in the domain and consider w0(x) = w(x) − u(x) ∧ x0 = u(x) ∧ (x − x0). Then �w0(x) = �u(x) ∧ (x − x0) − 2∇ ∧ u(x). 
Therefore one has the identity ∇ ∧ u(x0) = − 1

2 �w0(x) which shows that the vorticity

ω = ∇ ∧ u

can be computed once one knows the inertial momentum and the angular momentum.
Conservation of angular momentum is also an important question for many different fundamental problems in fluid 

dynamics. We just give few examples. A first problem is fluid simulations of the atmosphere around the earth. Indeed it is 
known that angular momentum of the atmosphere may interact with the angular momentum of the planet itself, an early 
work on this topic is to be found in [35]. Quoting indeed a recent PhD thesis [18], the Angular Momentum budget represents 
a beautiful example of how the atmosphere, oceans and solid earth interact. In this context an accurate computation of angular 
momentum is necessary to simulate such systems with fluid flow solvers. For this example we are not aware of any use 
of standard Finite Volume CFD schemes. A completely different physical problem is rotation of MHD flows in Tokamaks 
for which angular preservation is clearly fundamental issue. It is addressed in the context of MHD solvers, either full MHD 
or reduced MHD, a general review is to found in [23]. We notice that Finite Volume techniques are rarely used in the 
Tokamaks community. On the other hand Godunov solvers are widely used for astrophysical flows, and angular momentum 
is a key feature for an accurate numerical treatment of the rotation of stars and planets: many works are devoted to this 
issue on Cartesian fixed grids and we quote only on few of them such as [34,37]. In this context, Käppeli and Mishra have 
recently proposed a Godunov scheme in Eulerian frame to address the issue of angular momentum conservation [24]. It 
has also a big impact for the chemical reactions into the combustion chamber of engines, in which the intake valve is 
usually placed to give the mixture a pronounced swirl [3]. The initial stage of turbulent flows is also clearly dominated by 
the strong vortices inside the flow. In the context of this work, we will show that preservation of the angular momentum 
enhances a lot the accuracy of implosion calculations near the focusing point, and that it minimizes the mesh imprint for 
such problems. A simple proof will be given that explains this fact. We stop here the list of such examples, but it is clear 
that vortical flows and related problems challenge the quality of flow solvers on arbitrary grids in many areas of applied 
science and computational fluid dynamics.

The plan of the works is as follows. The basis of our method is detailed in Section 2, where we propose to add a local 
degree of freedom to respect the preservation of angular momentum. The structure of the new scheme is detailed using 
the Glace formalism. We also explain how the new scheme can be recast as a special DG method. Next in Section 3, we 
analyze the stability with the entropy principle. Section 4 is devoted to some key implementation details, in particular how 
to design an angular momentum scheme compatible with the Muscl techniques which are in our case essential to obtain a 
stable second-order. Implementation of the method in axi-symmetric formulation is addressed in Section 5. We then turn 
to dedicated numerical examples in Section 6 and conclude.
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