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In this paper, a multilayer generalisation of the Shallow Shelf Approximation (SSA) is 
considered. In this recent hybrid ice flow model, the ice thickness is divided into thin 
layers, which can spread out, contract and slide over each other in such a way that the 
velocity profile is layer-wise constant. Like the SSA (1-layer model), the multilayer model 
can be reformulated as a minimisation problem. However, unlike the SSA, the functional 
to be minimised involves a new penalisation term for the interlayer jumps of the velocity, 
which represents the vertical shear stresses induced by interlayer sliding. Taking advantage 
of this reformulation, numerical solvers developed for the SSA can be naturally extended 
layer-wise or column-wise. Numerical results show that the column-wise extension of 
a Newton multigrid solver proves to be robust in the sense that its convergence is barely 
influenced by the number of layers and the type of ice flow. In addition, the multilayer 
formulation appears to be naturally better conditioned than the one of the first-order 
approximation to face the anisotropic conditions of the sliding-dominant ice flow of ISMIP-
HOM experiments.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Glaciologists need ice flow models which can be run at very large scales (in space and time) and treat the mechanics 
adequately while being computationally tractable. Examples of applications are in marine ice sheet modelling in order to 
better evaluate sea level rise in a climate change regime [34], or in paleoglaciology in order to reconstruct the extents 
of glaciers and ice sheets over glacial cycles [25]. Despite some recent progress achieved in parallelising solvers [2] or 
domain decomposition [31], 3D models remain too computationally demanding to be used for that purpose. In addition, 
remeshing procedures in 3D are complex to apply, since meshes must conserve a certain quality in order to preserve the 
performances of the solver [16]. For this reason, simplified zero-order models of reduced complexity like the Shallow Ice 
Approximation (SIA) [12] or the Shallow Shelf Approximation (SSA) [18,17,35] are still popular in the community of glacier 
and ice sheet modellers for running large-scale simulations. Based on the assumption of small aspect ratios of the ice 
geometries, the SIA, which is a mathematical 1D (vertical) model, accounts only for vertical shear stresses, while the SSA, 
which is mathematically 2D (horizontal), accounts only for longitudinal stresses. If it is justified to use either the SSA or 
the SIA in some localised parts of the ice domain, it is often necessary to combine the two when modelling the ice flows 
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of an entire glacier or ice sheet. For example, the vertical shear components of the stress tensor are significant where ice is 
frozen to the ground, while the longitudinal components are dominant in the fast-sliding parts, like the floating areas, such 
that using the SIA on the grounded part and the SSA on the floating area might look acceptable. Unfortunately, such an 
approach is not suitable in the vicinity of the Grounding Line (GL) which delimits the grounded and the floating areas, as all 
components must be accounted for [29]. This has driven the construction of “hybrid” models, which account for both kind 
of stresses, while being mathematically 2D. The simplest hybrid model consists of the linear combination SIA+SSA, which is 
arrived at by adding together the velocities of each model [3]. Unfortunately, this model does not include the simultaneous 
coupling between the vertical shear and the longitudinal stresses. As a result, the model cannot capture the 3D ice flows 
that occur in deep and narrow valleys or in the vicinity of GLs [23,14]. In contrast, the L1L2 [11] or some variants like the 
ones proposed in [24,30] or in [8] include the vertical shear stress in the computation of the effective viscosity of the SSA. 
All these hybrid models have in common is that they solve a single non-linear elliptic 2D problem, and that the velocity 
profile is reconstructed a posteriori via an implicit relation [30,36,4].

In this paper, a recently introduced hybrid multilayer model generalising the SSA is considered [13]. This approach 
consists of seeing the ice thickness as a pile of thin layers which can spread out, contract and slide over each other. 
Assuming a vertically piecewise-constant velocity profile in each layer, the model derives from local depth-integrations 
of the hydrostatic approximation [1,20]. The crucial step when deriving the model consists of redefining the interlayer 
tractions by keeping only the shear components. The final multilayer model consists of a tridiagonal system of 2D non-linear 
elliptic equations, whose number corresponds to the number of layers. By construction, this multilayer model naturally 
generalises the SSA, which corresponds to the 1-layer case of the model. As a consequence, it is called “Multilayer Shallow 
Shelf Approximation” in this paper and is abbreviated as MSSA. Unlike the SSA, the MSSA is hybrid since it combines the 
longitudinal and the vertical shear stresses. Like the SSA, the MSSA model can be reformulated as a minimisation problem 
for a certain functional. Interestingly, with such a reformulation, the new term corresponding to vertical shear stresses can 
been interpreted as a penalisation term for the interlayer jumps of the velocity components. Finally, in contrast to the 
First-Order Approximation (FOA) [1,20] which consists of a 3D elliptic problem or the Stokes model [6,15] which consists 
of a 3D saddle-point problem, the MSSA consists of a system of 2D elliptic equations, and thus is much easier to solve. 
Moreover, any solver that has been developed for the SSA can be extended to solve the MSSA layer-wise or column-wise. 
The performance of the resulting numerical solvers is tested for the prognostic benchmark flow-line experiments B and D 
of the ISMIP-HOM project [22]. In addition, one applies the MSSA model to the first test problem proposed by the Marine 
Ice Sheet Model Inter-comparison Project (MISMIP) [21].

This paper is organised as follows: in Section 2, the SSA model and its multilayer extension are first recalled. Then the 
MSSA model is reformulated as a minimisation problem. Afterwards, two numerical methods based on an SSA solver are 
described for solving the MSSA system in Section 3. Lastly, numerical results are reported in Section 4.

2. Model

In this section, a generic two- and three-dimensional system of ice sheet and ice shelf is considered. For the three-
dimensional model (d = 3), the ice sheet extends over a two-dimensional horizontal domain contained in � ⊂ R

2. Its 
height and all other quantities will be described as functions over �. If we assume that no physical variable varies in the 
horizontal direction y, then a three-dimensional ice sheet can described by a single vertical section at y = 0, leading to 
a two-dimensional ice sheet model (d = 2), see Fig. 1. In this model the ice sheet extends over a one-dimensional horizontal 
domain contained in � ⊂ R that is orthogonal to the direction y of constant shape. Although such ice sheet is not physical, 
it is useful for the sake of understanding.

Following the notations introduced in [13], the domain of ice is defined by

{(x, z), x ∈ �, s(x) ≤ z ≤ s(x)}, (1)

where � ⊂ R
d−1 represents its horizontal projection, x = x or x = (x, y) denote the horizontal coordinates for d = 2 or 3, 

z denotes the vertical coordinate, b(x), s(x) and s(x) are the elevations of the bedrock, the lower and upper ice surfaces; 
see Fig. 1. Note that s = b holds where ice is grounded and s > b where ice is floating. The flotation of ice is driven by the 
Archimedes principle,

s = max

{
b,− ρ

ρw
h

}
, (2)

where h := s − s is the ice thickness and ρ and ρw are the constant densities of ice and water, respectively (see Fig. 1). 
Relation (2) says that if the buoyancy −ρw gb is less than the ice overburden ρgh, then ice is grounded, otherwise ice is 
floating and ρ/ρw of the ice thickness is below sea level.

At the lower interface, ice might be frozen to the ground, sliding on the ground or floating on water. In what follows, 
�0, �m , � f and �l denote the projection into the horizontal plane of the non-sliding part, the sliding grounded part, 
the floating part and the calving front, respectively. As a matter of fact, � = �0 ∪ �m ∪ � f and �l ⊂ ∂�. In this paper 
∇ = ∇x, ∇· = ∇x· denote gradient and divergence operators, respectively, with respect to the horizontal variables x.

Section 2 is organised as follows. First, the commonly used SSA model [18,17,35,14,26] is recalled in Section 2.1. Second, 
the MSSA system derived in [13] is recalled in a vectorial form and reformulated as variational and minimisation problems 
in Section 2.2.
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