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We extend the positivity-preserving method of Zhang and Shu [49] to simulate the 
advection of neutral particles in phase space using curvilinear coordinates. The ability to 
utilize these coordinates is important for non-equilibrium transport problems in general 
relativity and also in science and engineering applications with specific geometries. The 
method achieves high-order accuracy using Discontinuous Galerkin (DG) discretization of 
phase space and strong stability-preserving, Runge–Kutta (SSP-RK) time integration. Special 
care is taken to ensure that the method preserves strict bounds for the phase space 
distribution function f ; i.e., f ∈ [0, 1]. The combination of suitable CFL conditions and 
the use of the high-order limiter proposed in [49] is sufficient to ensure positivity of 
the distribution function. However, to ensure that the distribution function satisfies the 
upper bound, the discretization must, in addition, preserve the divergence-free property 
of the phase space flow. Proofs that highlight the necessary conditions are presented 
for general curvilinear coordinates, and the details of these conditions are worked out 
for some commonly used coordinate systems (i.e., spherical polar spatial coordinates 
in spherical symmetry and cylindrical spatial coordinates in axial symmetry, both with 
spherical momentum coordinates). Results from numerical experiments — including one 
example in spherical symmetry adopting the Schwarzschild metric — demonstrate that 
the method achieves high-order accuracy and that the distribution function satisfies the 
maximum principle.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we design discontinuous Galerkin methods for the solution of the collision-less, conservative Boltzmann 
equation in general curvilinear coordinates
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that preserve, in the sense of local cell averages, the physical bounds on the distribution function f = f (x, p, t). This 
function gives the density of particles with respect to the phase space measure dx dp. In Eq. (1), t ∈ R+ represents time, 
and xi and pi are components of the position vector x ∈ Rdx and momentum vector p ∈ Rdp , respectively. In general, 
dx = dp = 3, but when imposing symmetries for simplified geometries, some dimensions may not need to be considered. 
F i and Gi are coefficients of the position space flux vector F f and the momentum space flux vector G f , respectively, 
while √γ ≥ 0 and 

√
λ ≥ 0 are the determinants of the position space and momentum space metric tensors, respectively. 

(See Appendix A for more details. In particular, Eq. (1) is obtained from the conservative, general relativistic Boltzmann 
equation in the limit of a time-independent spacetime.) Eq. (1) must be supplemented with appropriate boundary and initial 
conditions which, at this point, are left unspecified.

The upper and lower bounds on f follow from the non-conservative advection equation
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which is formally equivalent to (1) due to the divergence-free property of the phase space, or “Liouville,” flow
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Indeed, it is straightforward to show that (2) preserves the bounds of the initial and boundary data. (Here we assume 
that the distribution function f (x, p, t) satisfies f ∈ [0, 1] ∀t .) We employ the conservative form for two major reasons: 
(1) it is mathematically convenient when discontinuities are present and (2) it leads naturally to numerical methods with 
conservative properties. The drawback is that preserving point-wise bounds on f becomes non-trivial.

Discontinuous Galerkin (DG) methods (see e.g., [13,12,18] and references therein) for phase space discretization are 
attractive for several reasons. First, they achieve high-order accuracy on a compact, local stencil so that data is only 
communicated with nearest neighbors, regardless of the formal order of accuracy. This leads to a high computation to 
communication ratio, and favorable parallel scalability on heterogeneous architectures [21]. Second, they exhibit favorable 
properties when collisions are added to the right-hand side of (1). In particular, they recover the correct asymptotic behav-
ior in the diffusion limit [23,1,17], which is characterized by frequent collisions with a material background and long time 
scales. To leverage these properties, it is important to preserve positivity in the phase space advection step since negative 
distribution functions are physically meaningless. In the case of fermions, f is also bounded above (i.e., f ≤ 1), which in-
troduces Pauli blocking factors in the collision operator. Violation of these bounds can result in numerical difficulties due 
to nonlinearities that can come from material coupling [29]. Simply introducing a cutoff in the algorithm is unacceptable, 
since this results in loss of conservation — a critical check on physical consistency.

In this paper, we extend the approach introduced in [49] in order to preserve upper and lower bounds of scalar con-
servation laws. The approach has three basic ingredients. First, one expresses the update of the (approximate) cell average 
in a forward Euler step as a linear combination of conservative updates. This requires a quadrature representation of the 
current local polynomial approximation that calculates the cell average exactly. Second, a limiter is introduced which mod-
ifies the current polynomial approximation, making point-wise values satisfy the prescribed bound on the quadrature set 
while maintaining the cell average. These two steps ensure that the Euler update of the cell average satisfies the required 
bounds. The third and final step is to apply a Strong Stability-Preserving Runge–Kutta (SSP-RK) method (e.g. [15]) which can 
be expressed as a convex combination of Euler steps and therefore preserves the same bounds as the Euler step.

The method from [49] has been extended and applied in many ways. Positivity-preserving DG and weighted essentially 
non-oscillatory (WENO) methods have been designed for convection–diffusion equations [52,47], the Euler equations with 
source terms [51], the shallow water equations [46], multi-material flows [9], the ideal MHD equations [11], moment models 
for radiation transport [38], and PDEs involving global integral terms including a hierarchical size-structured population 
model [48]. The specific problem of maintaining a positive distribution function in phase space has been considered in 
[10,40,43] for the case of Cartesian coordinates. In [10], the authors consider an Eulerian scheme for the Boltzmann–Poisson 
system with a linear collision operator. In [40,43], semi-Lagrangian schemes are used to approximate the Vlasov–Poisson 
system, which contains no collisions. In the current work we also ignore the effects of the collision operator, and consider 
the conservative phase space advection equation in (1). We enforce both the upper and lower bounds on f for general 
curvilinear coordinates. This introduces some non-trivial differences. In particular,

1. The volume element in each computational phase space cell depends on the coordinates. This means that mass matrices 
can vary from cell to cell. It also complicates the quadrature needed for exact evaluation of the cell average. Finally, 
the balance between cell averages and fluxes that gives the proper bounds requires special treatment. These last two 
properties may lead to a reduced CFL condition.
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