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A novel Finite Volume (FV) technique for solving the compressible unsteady Euler equations 
is presented for two-dimensional adaptive grids over time dependent geometries. The 
interpretation of the grid modifications as continuous deformations of the underlying 
discrete finite volumes allows to determine the solution over the new grid by direct 
integration of the governing equations within the Arbitrary Lagrangian–Eulerian (ALE) 
framework, without any explicit interpolation step. The grid adaptation is performed 
using a suitable mix of grid deformation, edge-swapping, node insertion and node 
removal techniques in order to comply with the displacement of the boundaries of the 
computational domain and to preserve the quality of the grid elements. Both steady and 
unsteady simulations over adaptive grids are presented that demonstrate the validity of 
the proposed approach. The adaptive ALE scheme is used to perform high-resolution 
computations of the steady flow past a translating airfoil and of the unsteady flow of a 
pitching airfoil in both the airfoil and the laboratory reference, with airfoil displacement 
as large as 200 airfoil chords. Grid adaptation is found to be of paramount importance to 
preserve the grid quality in the considered problems.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Two natural descriptions of the motion exist in continuum mechanics: the Lagrangian and the Eulerian one [1]. A third, 
hybrid approach is the arbitrary Lagrangian–Eulerian description of the fluid motion which combines the advantages of the 
other two classical approaches and possibly reduces their respective drawbacks [2,3].

In their earlier applications ALE algorithms where used to extend the capabilities of Lagrangian based solver in tackling 
solid mechanics problems with large deformations. Those types of algorithms usually can be schematically described by a 
three steps procedure. A Lagrangian/Eulerian phase during which the equations of motion are explicitly updated [4]. A re-
zone during which the grid quality is improved thanks to grid regularization [5] or by geometry-based node placement [6]. 
A remap phase, where the solution is interpolated from the old grid to the new one. This last operation is the most critical 
as it must be conservative, must preserve the monotonicity of the solution and should be as accurate as possible. Many ap-
proaches exist, a popular one performs an interpolation using the volumes swept by the elements during the rezone phase 
as weighs [7] and can be followed by a repair step to prevent under/overshoots [8]. Other techniques combine low-order 
inter cell fluxes with some portion of higher-order fluxes, in a flux-limiter fashion, e.g. the Flux-Corrected Remapping [9]. 
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More recently, a smoothing procedure was proposed to eliminate the re-mapping error in ALE schemes [10]. Different ap-
proaches exist where the solution update is coupled with the remap phase. Indeed in many applications of interest the 
physics equations are recast in the ALE framework implicitly accounting for the grid movement [11,12]. Remapping algo-
rithms were successfully applied to the simulation of multi-material problems [13–15,47,48].

Recasting Eulerian schemes in the ALE framework is fairly straightforward and usually requires minor modifications to 
the algorithm [16], however particular care has to be taken to preserve the time accuracy [17,12,18,19]. In fact, a naïve 
extension of fixed-grid methods to flows in moving domains does not preserve numerical accuracy and may possibly lead 
to numerical instabilities [17]. Therefore, care is to be taken in both the evaluation of the local grid velocities and the 
definition of the geometric quantities, which cannot be chosen independently [20]. Thomas and Lombard [21] proposed to 
supply the discrete statement of the problem with the additional constraint of reproducing a uniform flow field exactly. 
This condition, known as the Geometric Conservation Law (GCL), is demonstrated to be sufficient to achieve a first-order 
time accuracy [22] but it is neither necessary nor sufficient for higher order accuracy [12]. Moreover, satisfying the GCL is a 
necessary and sufficient condition to guarantee the nonlinear stability of the integration scheme [23]. An updated review of 
the literature on the subject can be found in [24].

In their standard formulations, ALE methods are usually limited in their action by the occurrence of invalid elements, 
which poses limitations to the maximum allowable displacement. Moreover, as pointed out in [29,28,27], if re-mapping 
or explicit interpolation over different grids is applied to account for the grid topology alteration in time, difficulties arise
in including multi-step time integration algorithm. For very large displacement of the boundaries, it is possible to locally 
change the topology of the grid without modifying the number of nodes [25–27], although preserving the grid quality and 
the desired spacing is not straightforward.

In a previous paper the authors presented a node-centered finite-volume ALE solver for grids undergoing edge-
swapping [27], where the modifications occurring in the shape of the finite volumes due to the changes in the topology 
are recast in a continuous fashion. Such approach makes it possible to compute the solution at the subsequent time level 
simply by integrating the governing equations and avoiding the need of an explicit remap phase. In the present work the 
same finite-volume solver is extended to the case of grid refinement and coarsening. Similarly to the case of edge swapping, 
the insertion or deletion of a node is described in terms of continuous deformation of the finite volumes associated to the 
computational grid. Therefore, when a vertex is inserted a new finite volume appears while it disappears when a vertex is 
removed.

The key idea is to give an interpretation of the changes in the topology that occur in the time lapse from tn and tn+1

as continuous deformation of the finite volumes performed within the same time interval. The area swept by the inter-
faces is split into two separate contributions: the deformation one, arising from the continuous (in time) grid movement 
and distortion and the adaptation one, in which additional numerical fluxes are included to account for the changes in 
the topology. The proposed approach avoids the introduction of any explicit interpolation step between grids with different 
topologies and instead makes use of the ALE approach, as it is commonly done when only grid deformation is used. Admit-
tedly, the application of ALE mapping is equivalent to an interpolation step; however, its application does not require any 
special treatment to ensure appropriate accuracy, conservativeness and preservation of function signs. Since cross-grid in-
terpolation is avoided [28,29], the implementation of multi-step high-order schemes for time integration, e.g. BDF schemes, 
is straightforward, as discussed in [27].

Future extensions to viscous, thermal conducting fluid are expected to be straightforward, since the ALE formulation 
does not modify the viscous and thermal conductivity contributions [2,3]. Care must be taken however in the proximity of 
the body surface, where very stretched boundary-layer grids made of non-simplectic elements are commonly used. Note 
that ALE schemes implementing shock-capturing techniques, including the present one, can be easily extended to deal with 
multi-material interface by e.g. the shock-capturing method of Abgrall [30] and modifications of it [31,32]. As an alternative, 
thanks to the large-displacement capability of the present scheme, the material interfaces can be explicitly advected within 
the ALE formulation and boundary-conforming grids can be used to represent it [33,34]. Extension to multi-material flows 
will be the focus of future research activities.

The present paper is structured as follows. The grid update strategy is briefly described in Section 2. In Section 3 the 
edge-based ALE solver is described for the case of a non-adaptive grid. A brief description of the time integration proce-
dures is also given in Section 3.2. In Section 4 are presented the modifications to the scheme required to account for the 
occurrence of edge-swapping, node insertion or deletion. In Section 4.5, implementation details are reported. In Section 5, 
numerical experiments are reported. In Sections 5.1 and 5.2 the proposed scheme is applied to the pseudo-steady case of a 
translating airfoil and the unsteady case of a translating and oscillating airfoil, respectively. Computations are carried out in 
both the airfoil and the laboratory reference frame to demonstrate the suitability of the present approach.

2. Grid update strategy

In the present work, grid adaptation techniques are used to preserve a high quality of the mesh and to enforce the 
desired element spacing distribution in numerical simulations of compressible flows involving large displacements of the 
boundaries. To this purpose, a suitable mix of techniques is adopted to displace the nodes and to locally modify the topology
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