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In the recent paper [2], a penalty method is proposed to address the so-called Bohm boundary conditions which are 
generally imposed to model the limiters, i.e. the walls that intercept in a tokamak the magnetic field lines. This approach 
is validated by considering a simple one-dimensional hyperbolic system, that constitutes a minimal transport model for 
ionic density and momentum. In [1] this penalty model is discussed and an improved formulation of the penalty method 
is proposed. More recently, in [6], a similar model is considered but completed with evolution equations for the ionic and 
electronic temperatures. Again, a penalty method is proposed to enforce the boundary conditions at the walls.

In the present note, we consider the system studied in [1,2] and show that as soon as the solution is smooth, a spectrally 
accurate approximation can be obtained. To this end, a stabilized spectral element method (SEM) is preferred to the Godunov 
schemes used in [1,2,6]. Moreover, instead of the penalty approach, which in the multidimensional context can only offer a 
first order algebraic convergence, we use a direct imposition of the Bohm boundary condition in an explicit time marching. 
The system studied in [1,2] writes:

∂t N + ∂xΓ = SN (1)

∂tΓ + ∂x

(
Γ 2

N
+ N

)
= SΓ (2)

with t ∈ R
+ and x ∈ Ω = (xmin, xmax) for the time and space variables and where N and Γ stand for the dimensionless 

ion density and ion momentum, respectively. In this model, the ion and electron temperatures are assumed to be constant, 
so that when using the perfect gas law, in dimensionless form the pressure is equal to the density. We then recognize 
the usual conservation equations of mass and momentum, where some source terms S N and SΓ are considered. Moreover, 
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the dimensionless velocity equals the Mach number, i.e. M = Γ/N . It is easy to check that the system (1)–(2) is strictly 
hyperbolic. In convective form it writes:

∂t

(
N
Γ

)
+

(
0 1

−M2 + 1 2M

)
∂x

(
N
Γ

)
=

(
SN

SΓ

)
(3)

and so the wave speeds, defined as the eigenvalues of the matrix in (3), equal λ± = M ± 1. As is well known, the number 
of boundary conditions to be considered depends on the number of ingoing waves. Thus, at xmax two boundary conditions 
are needed if M < −1, one boundary is needed if −1 < M < 1 and no boundary conditions are needed if M > 1.

In order to model the limiter by a particles sink, the Bohm boundary condition states that M(xmax) ≥ 1 [3]. Note that 
M(xmax) = 1 corresponds to the case where the boundary x = xmax is characteristic, so that it is not clear what should be 
done. Thus, in [1] it is suggested to slightly modify the boundary condition by imposing M(xmax) = 1 − η and M(xmin) =
1 + η, with a fixed (small) η > 0 in order to consider a well-posed hyperbolic problem. From our point of view, here this 
problem is mainly theoretical and probably not relevant as soon as numerical time and space discretizations are involved. 
Hereafter, we enforce the following Bohm conditions:

M(xmin) ≤ −1 and M(xmax) ≥ 1. (4)

To check this approach in the frame of high order methods, we use in space the SEM, i.e. a high order nodal finite ele-
ment method such that the approximation space, say Eh , contains all C0 functions whose restriction in each element is a 
polynomial of degree p, see e.g. [4]. In each element the basis functions are Lagrange polynomials based on the Gauss–
Lobatto–Legendre (GLL) points and these GLL interpolation points are also used as quadrature points (quadratures are then 
exact for polynomials of degree 2p − 1). Moreover, since the problem is hyperbolic, shocks may develop and a stabilization 
technique is required. We use the Spectral Vanishing Viscosity (SVV) technique introduced in [5,7] (see also [8] in the multi-
dimensional context). With (Nh, Γh) for the numerical approximations of (N, Γ ), we thus consider the following variational 
formulation:

xmax∫
xmin

∂t Nh vhdx +
xmax∫

xmin

∂xΓh vhdx + V N =
xmax∫

xmin

SNh vhdx, ∀vh ∈ Eh , (5)

xmax∫
xmin

∂tΓh vhdx +
xmax∫

xmin

∂x

(
Γ 2

h

Nh
+ Nh

)
vhdx + VΓ =

xmax∫
xmin

SΓ h vhdx, ∀vh ∈ Eh (6)

where the SVV stabilization terms write:

V N = εhp

xmax∫
xmin

Q p(∂xNh)∂x vhdx, VΓ = εhp

xmax∫
xmin

Q p(∂xΓh)∂x vhdx. (7)

In these expressions, εhp controls the amplitude of the SVV term and Q p is the so-called SVV operator whose kernel 
contains all low frequency Legendre components, say for k ≤ mp < p of the spectral approximation, see e.g. [5] for details. In 
the computations, we have systematically used εhp = h/p, where h is the grid-size, and mp = [√p] ([.], for nearest integer).

For the integration in time, we use a standard fourth order Runge Kutta scheme (RK4 scheme). Then, to enforce the 
Bohm conditions we impose at the end of each RK4 step:

Nh(xmin) := −Γh(xmin) if
Γh

Nh
(xmin) > −1; Nh(xmax) := Γh(xmax) if

Γh

Nh
(xmax) < 1. (8)

On the basis of this SEM approximation, we have considered three different test cases.

Test case 1: This test-case is the one introduced in [2]. The length of the domain is unitary, Ω = (0, 1). At the initial 
time t = 0 the fluid is at rest, M0 = Γ0 = 0, and the density is constant, N0 = 1. For the source terms one has SN = 2 and 
SΓ = 0. In [2] the asymptotic solution, i.e. obtained at t � 1, is compared to the analytical one, say (N∞, Γ∞), such that:

N∞ = SN
(
0.5 + √

x(1 − x)
)
, Γ∞ = SN(x − 0.5). (9)

The computation has been carried out with K = 20 elements and with the polynomial degree p = 6. In Fig. 1, we show 
the solution (Nh, Γh/Nh) at different times. At the final time of the computation, the numerical solution clearly agrees with 
the analytical one. Despite the use of the SVV technique, one can discern that the solution is not perfectly smooth. This is 
mainly associated to the fact that for this test case the initial profiles N0 and Γ0 do not verify the Bohm conditions, since 
M(0) = M(1) = 0 at t = 0.

Test case 2: This test-case is similar to test-case 1, i.e. SN = 2 and SΓ = 0, but to check our algorithm with a supersonic–
subsonic transition at the boundary, the initial condition for the momentum is now Γ0 = 2(x − 0.5) − 2 sin(πx). Then, at 
the initial time, the flow is sonic at the boundaries and partially subsonic and supersonic inside the domain. This situation 
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