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The off-lattice Boltzmann (OLB) method consists of numerical schemes which are used 
to solve the discrete Boltzmann equation. Unlike the commonly used lattice Boltzmann 
method, the spatial and time steps are uncoupled in the OLB method. In the currently 
proposed schemes, which can be broadly classified into Runge–Kutta-based and characteris-
tics-based, the size of the time-step is limited due to numerical stability constraints. In 
this work, we systematically compare the numerical stability of the proposed schemes in 
terms of the maximum stable time-step. In line with the overall LB method, we investigate 
the available schemes where the advection approximation is explicit, and the collision 
approximation is either explicit or implicit. The comparison is done by implementing 
these schemes on benchmark incompressible flow problems such as Taylor vortex flow, 
Poiseuille flow, and lid-driven cavity flow. It is found that the characteristics-based OLB 
schemes are numerically more stable than the Runge–Kutta-based schemes. Additionally, 
we have observed that, with respect to time-step size, the scheme proposed by Bardow 
et al. (2006) [1] is the most numerically stable and computationally efficient scheme 
compared to similar schemes, for the flow problems tested here.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The lattice Boltzmann (LB) method is an alternative and powerful numerical technique used for modeling a variety 
of complex hydrodynamic flows [2,3]. Unlike conventional numerical methods which discretize the macroscale governing 
equations directly, the LB method solves a fully-discrete kinetic equation for distribution functions (DFs) f i(x, t), designed 
to reproduce the Navier–Stokes equation in the hydrodynamic limit. The LB method has advantages such as ease of paral-
lelization, simplicity of programming, and a capability for incorporating model interactions for simulating complex flows.

A defining feature of the LB method is the coupling between the velocity and space–time discretizations. That is, for 
a particular discrete-velocity set, ξ i , the coupling automatically fixes the temporal and spatial steps through the relation 
�x = ξ i�t . This procedure has some advantages such as numerical-diffusion free (exact) advection and computational ef-
ficiency (copy-operation). The coupling is, in fact, a carryover from the earliest LB models, which were based on Lattice 
Gas Automata (LGA). However, the LGA link was broken when it was shown more than a decade ago that the LB method 
can be derived directly from the discrete Boltzmann equation as a special finite-difference scheme [4–6]. Consequently, the 
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velocity-space can be discretized according to the flow-physics to be modeled. The discretization of space and time is a 
numerical requirement and, importantly, is not tied to the discretization of the velocity-space.

As a consequence, a subset of the LB method, called the off-lattice Boltzmann (OLB) method, was developed where space 
and time are independently discretized, i.e. �x �= ξ i�t . In the OLB method, we do not have the simplicity of a Lagrangian-
type of evolution (streaming), rather the evolution of f i takes place in an Eulerian sense. The earliest OLB schemes were 
geared mainly towards extending the geometric flexibility of the LB method, which was previously limited, due to the 
requirement of a uniform Cartesian mesh. Several OLB schemes with different spatial discretization methods such as finite-
volume (FV), finite-element (FE), and finite-difference (FD), along with their variants, have been developed. For example, 
OLB schemes were used for non-uniform mesh [7], curvilinear co-ordinates [8,9], unstructured mesh [10–12], finite element 
mesh [13,1] among others. These advancements have made the LB method feasible for many practical engineering problems.

In addition to improving the geometric flexibility of the LB method, OLB schemes can also be used to solve the discrete 
Boltzmann equation (DBE) with higher-order lattices. Higher-order lattices are sets of discrete velocities, which are more 
suited to model more complex flows such as thermal flows, micro-scale (high Knudsen number) flows, etc. In many of these 
velocity sets (also termed as non-space-filling or off-lattice), the discrete velocities cannot be expressed as an integer multiple 
of the smallest non-trivial speed. The D2Q16 velocity-set listed in [6] and [14] and the D2V17n velocity-set in [15] are 
typical examples. Since the regular stream-collide type of evolution scheme cannot be employed with these lattices, OLB 
schemes provide a viable evolution scheme for the DBE.

While several sophisticated spatial-discretization methods have been developed, many of the studies use time-marching 
schemes such as explicit Euler or Runge–Kutta (RK) for temporal discretization. Typically, these schemes require very 
small values of �t relative to the relaxation parameter τ , to maintain numerical stability [16,17]. Small �t requirement 
is particularly restrictive in the case of flows with high Reynolds number (Re) flows where τ is very small. Moreover, 
in the LB method, the Mach number Ma in the simulations has to be kept small (generally less than 0.1) to limit the 
compressibility errors. Small values of Ma lead to a slower convergence rate, especially for steady-state flow problems 
[18,19]. Thus, the combined effects of small Ma and �t increase the overall computational cost of the RK-based OLB 
schemes.

Many alternative time-marching schemes have been proposed that maintain the numerical stability of the OLB method 
at higher values of �t , relative to the relaxation parameter τ , i.e. at higher �t/τ values. These schemes vary greatly in 
their numerical stability due to the different approximations of the collision and advection part of the DBE. Hence, there is 
a need to systematically compare their relative performance in terms of the numerical stability of these schemes. This work 
addresses this need.

More specifically, we assess the stability of various OLB schemes, as quantified in terms of their maximum allowable 
�t/τ ratio. This is done via benchmark testing on incompressible flow problems such as Taylor-vortex flow, Poiseuille flow 
and lid-driven cavity flow. The on-lattice D2Q9 velocity set, which is used here for evaluation purposes, is described in 
Section 2.1. The various time-marching (OLB) schemes used in the comparative analysis are described in brief in Section 2.2.

2. Numerical formulation

2.1. Discrete Boltzmann equation

The basis for all OLB schemes is the Boltzmann equation with the Bhatnagar–Gross–Krook collision approximation [20], 
which is given as:

∂ f

∂t
+ ξ · ∇ f = − 1

τ

(
f − f eq), (1)

where f ≡ f (x, ξ , t) is the single-particle distribution function, ∇ f ≡ ∂
∂xα

is the spatial gradient of f , ξ is the microscale 
velocity, τ is the relaxation time of the collision process, and f eq = f eq(x, ξ , t) is the local Maxwell–Boltzmann (equilibrium) 
distribution function. Eq. (1) is continuous in velocity and configuration (x, t) space. To discretize the velocity space ξ , the 
equation is non-dimensionalized using a chosen speed of sound, and the resulting f eq is expanded in a Taylor-series of fluid 
velocity u up to second-order. The discrete velocities are then obtained from the requirement that the lower-order hydrody-
namic moments with respect to the truncated f eq satisfy the conservation of mass, momentum, and energy [5,6]. Following 
this procedure, we obtain the widely-used discrete velocity set of the D2Q9 lattice, for which the discrete Boltzmann–BGK 
equation can be written as:

∂ f i

∂t
+ ξ i · ∇ f i = − 1

τ

(
f i − f eq

i

)
, (2)

where f i ≡ f i(x, ξ i, t), f eq
i ≡ f eq

i (x, ξ i, t) and i = 0, 1, 2, · · · , 8. Here, while the Greek subscripts α ≡ {x, y} in 2D imply 
summation, the Latin subscripts (over velocity) do not imply summation. Eq. (2) is termed as the discrete Boltzmann equation
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