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We present a new interatomic potential for solids and liquids called Spectral Neighbor 
Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-
learning techniques to reproduce the energies, forces, and stress tensors of a large set of 
small configurations of atoms, which are obtained using high-accuracy quantum electronic 
structure (QM) calculations. The local environment of each atom is characterized by 
a set of bispectrum components of the local neighbor density projected onto a basis 
of hyperspherical harmonics in four dimensions. The bispectrum components are the 
same bond-orientational order parameters employed by the GAP potential [1]. The SNAP 
potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum 
components. The linear SNAP coefficients are determined using weighted least-squares 
linear regression against the full QM training set. This allows the SNAP potential to 
be fit in a robust, automated manner to large QM data sets using many bispectrum 
components. The calculation of the bispectrum components and the SNAP potential are 
implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a 
previously unnoticed symmetry property can be exploited to reduce the computational 
cost of the force calculations by more than one order of magnitude. We present results for 
a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly 
calculated properties of both the crystalline solid and the liquid phases. In addition, unlike 
simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation 
migration in BCC tantalum.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Classical molecular dynamics simulation (MD) is a powerful approach for describing the mechanical, chemical, and ther-
modynamic behavior of solid and fluid materials in a rigorous manner [2]. The material is modeled as a large collection 
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of point masses (atoms) whose motion is tracked by integrating the classical equations of motion to obtain the positions 
and velocities of the atoms at a large number of timesteps. The forces on the atoms are specified by an interatomic po-
tential that defines the potential energy of the system as a function of the atom positions. Typical interatomic potentials 
are computationally inexpensive and capture the basic physics of electron-mediated atomic interactions of important classes 
of materials, such as molecular liquids and crystalline metals. Efficient MD codes running on commodity workstations are 
commonly used to simulate systems with N = 105–106 atoms, the scale at which many interesting physical and chemical 
phenomena emerge. Quantum molecular dynamics (QMD) is a much more computationally intensive method for solving a 
similar physics problem [3]. Instead of assuming a fixed interatomic potential, the forces on atoms are obtained by explicitly 
solving the quantum electronic structure of the valence electrons at each timestep. Because MD potentials are short-ranged, 
the computational complexity of MD generally scales as O (N), whereas QMD calculations require global self-consistent 
convergence of the electronic structure, whose computational cost is O (Nα

e ), where 2 < α < 3 and Ne is the number of 
electrons. For the same reasons, MD is amenable to spatial decomposition on parallel computers, while QMD calculations 
allow only limited parallelism.

As a result, while high accuracy QMD simulations have supplanted MD in the range N = 10–100 atoms, QMD is still 
intractable for N > 1000, even using the largest supercomputers. Conversely, typical MD potentials often exhibit behavior 
that is inconsistent with QMD simulations. This has led to great interest in the development of MD potentials that match 
the QMD results for small systems, but can still be scaled to the interesting regime N = 105–106 atoms [1,4,5]. These 
quantum-accurate potentials require many more floating point operations per atom compared to conventional potentials, 
but they are still short-ranged. So the computational cost remains O (N), but with a larger algorithm pre-factor.

In this paper, we present a new quantum-accurate potential called SNAP. It is designed to model the migration of 
screw dislocations in tantalum metal under shear loading, the fundamental process underlying plastic deformation in body-
centered cubic metals. In the following section we explain the mathematical structure of the potential and the way in which 
we fit the potential parameters to a database of quantum electronic structure calculations. We follow that with a brief de-
scription of the implementation of the SNAP potential in the LAMMPS code. We demonstrate that a previously unnoticed 
symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of 
magnitude. We then present results for the SNAP potential that we have developed for tantalum. We find that this new 
potential accurately reproduces a range of properties of solid and liquid tantalum. Unlike simpler potentials, it correctly 
matches quantum MD results for the screw dislocation core structure and minimum energy pathway for displacement of 
this structure, properties that were not included in the training database.

2. Mathematical formulation

2.1. Bispectrum components

The quantum mechanical principle of near-sightedness tells us that the electron density at a point is only weakly affected 
by atoms that are not near. This provides support for the common assumption that the energy of a configuration of atoms is 
dominated by contributions from clusters of atoms that are near to each other. It is reasonable then to seek out descriptors 
of local structure and build energy models based on these descriptors. Typically, this is done by identifying geometrical 
structures, such as pair distances and bond angles, or chemical structures, such as bonds. Interatomic potentials based 
on these approaches often produce useful qualitative models for different types of materials, but it can be difficult or 
impossible to adjust these potentials to accurately reproduce known properties of specific materials. Recently, Bartók et al. 
have studied several infinite classes of descriptors that are related to the density of neighbors in the spherically symmetric 
space centered on one atom [1,6,7]. They demonstrated that by adding descriptors of successively higher order, it was 
possible to systematically reduce the mismatch between the potential and the target data. A variant of the GAP formalism 
has been successfully used to develop several new potentials for tungsten [8]. One of these descriptors, the bispectrum of 
the neighbor density mapped on to the 3-sphere, forms the basis for their Gaussian Approximation Potential (GAP) [1]. We 
also use the bispectrum as the basis for our SNAP potential. We derive this bispectrum below, closely following the notation 
of Ref. [7].

The density of neighbor atoms around a central atom i at location r can be considered as a sum of δ-functions located 
in a three-dimensional space:

ρi(r) = δ(r) +
∑

rii′<Rcut

fc(rii′)wi′δ(r − rii′) (1)

where rii′ is the vector joining the position of the central atom i to neighbor atom i′ . The wi′ coefficients are dimensionless 
weights that are chosen to distinguish atoms of different types, while the central atom is arbitrarily assigned a unit weight. 
The sum is over all atoms i′ within some cutoff distance Rcut . The switching function fc(r) ensures that the contribution 
of each neighbor atom goes smoothly to zero at Rcut . The angular part of this density function can be expanded in the 
familiar basis of spherical harmonic functions Y l

m(θ, φ), defined for l = 0, 1, 2, . . . and m = −l, −l + 1, . . . , l − 1, l [9]. The 
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