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In this paper, we present two efficient energy stable schemes to solve a phase field 
model incorporating moving contact line. The model is a coupled system that consists 
of incompressible Navier–Stokes equations with a generalized Navier boundary condition 
and Cahn–Hilliard equation in conserved form. In both schemes the projection method is 
used to deal with the Navier–Stokes equations and stabilization approach is used for the 
non-convex Ginzburg–Landau bulk potential. By some subtle explicit–implicit treatments, 
we obtain a linear coupled energy stable scheme for systems with dynamic contact line 
conditions and a linear decoupled energy stable scheme for systems with static contact 
line conditions. An efficient spectral-Galerkin spatial discretization method is implemented 
to verify the accuracy and efficiency of proposed schemes. Numerical results show that the 
proposed schemes are very efficient and accurate.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Phase-field/diffuse-interface models, whose origin can be traced back to Rayleigh [29] and Waals [41], have become one 
of the major tools to deal with many dynamical processes in material/biological morphology, in particular, the multiphase 
fluid systems that we are interested in this paper. The typical phase field model can be described by either the Allen–Cahn 
equation (see Bray [2]) or the Cahn–Hilliard equation (Cahn and Hilliard, [4]) based on energetic variational approaches. 
The Allen–Cahn equation is a second-order equation, which is easier to solve numerically but does not conserve the volume 
fraction, while the Cahn–Hilliard equation is a fourth-order equation which conserves the volume fraction but is relatively 
harder to solve numerically. A particular advantage of the phase-field approach is that the derived models are usually 
well-posed nonlinear partial differential equations that satisfy thermodynamics-consistent energy dissipation laws, which 
makes it possible to carry out mathematical analysis and further design numerical schemes which satisfy corresponding 
discrete energy dissipation laws. Thus phase field models recently have been the subject of many theoretical and numerical 
investigations (cf., for instance, [5,8,12–14,19,21,24,31,33,35–38,43]).

When the fluid–fluid interface touches a solid wall, it creates a moving contact line (MCL) problem that exists in many 
physical processes, for instance, wetting, coating, painting, etc. In this situation, it is well-known that the no-slip boundary 
condition for the Navier–Stokes equations is no longer applicable, otherwise, a non-physical velocity discontinuity will occur 
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at the MCL (see e.g. [9,10,26]). Simulations by Koplik et al. [22,23], Thompson and Robbins [39], among others, using 
Molecular Dynamics (MD) showed that nearly complete slip happens near the MCL. To investigate the complex behavior 
at MCLs, microscopic-macroscopic hybrid simulations were carried out by Hadjiconstantinou [17], Ren and E [30], etc. This 
approach is powerful but computationally expensive for macroscopic applications. On the other hand, a set of accurate 
boundary conditions for the MCL problem in the context of phase field model was derived by Qian et al. [27], where 
they proposed a general Navier boundary condition (GNBC) and a dynamic contact line condition for a macroscopic model 
consisting of the Navier–Stokes equations and the Cahn–Hilliard equation. An explicit numerical scheme, which dictates a 
very small time step, was used to solve the Cahn–Hilliard equation to compare the results with MD simulations.

Recently, several attempts were made to improve the numerical stability and efficiency of solving the Navier–Stokes and 
Cahn–Hilliard coupled system for MCL problems. In He et al. [18], the authors proposed an operator splitting method with 
a least-squares finite element method for one of the sub-steps. The authors of Dong [6] and Dong and Shen [7] constructed 
some decoupled schemes for systems with variable density, however they did not provide any theoretical proof of discrete 
energy law for the decoupled schemes with dynamic contact line conditions. In Gao and Wang [14,15], Salgado [31] and 
Aland and Chen [1], the authors developed some energy stable schemes for the moving contact line problem with constant 
and/or variable densities. However, their schemes require solving a coupled nonlinear system for the phase function and 
velocity.

In this paper, we consider a phase-field moving contact line model which is a conserved version of the model proposed 
by Qian et al. [27,28]. We construct two energy stable temporal schemes for this model. One is a linear coupled scheme 
for systems with dynamic contact line conditions, the other is a linear decoupled scheme for systems with static contact 
line conditions. We then implement a Fourier–Legendre Galerkin approximation to investigate the efficiency and accuracy 
for the two schemes.

2. A Navier–Stokes Cahn–Hilliard coupled model in conserved form

We consider the moving contact line dynamics of a two-phase incompressible, immiscible fluid in a physical domain 
denoted by Ω with boundary Γ . It is showed in [27,28] that this problem can be modeled by a Navier–Stokes Cahn–Hilliard 
coupled system (NSCH) with a general Navier boundary condition. A non-dimensional, conserved version of the system is 
given below.

Incompressible Navier–Stokes equations for hydrodynamics:

R(ut + u · ∇u) = �u − ∇p − Bφ∇μ, (2.1)

∇ · u = 0, (2.2)

u · n = 0 on Γ, (2.3)

l(φ)(uτ − uw) + ∂nuτ − BL(φ)∇τ φ = 0 on Γ. (2.4)

Cahn–Hilliard equation for the dynamics of phase variable:

φt + ∇ · (uφ) = M�μ, (2.5)

μ = −ε�φ + f (φ), (2.6)

∂nμ = 0 on Γ, (2.7)

φt + uτ · ∇τ φ = −γ L(φ) on Γ. (2.8)

In the above system, the unknowns are: u — the fluid velocity, p — the pressure, φ — the phase-field variable, μ — the 
chemical potential. The function L(φ) in Eq. (2.8) is given by

L(φ) = ε∂nφ + g′(φ), (2.9)

where g(φ) is the boundary interfacial energy; l(φ) ≥ 0 is a given coefficient function; the function f (φ) = F ′(φ), with F (φ)

being the Ginzburg–Landau bulk potential. More precisely, F and g are defined as

F (φ) = 1

4ε

(
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)2
, g(φ) = −

√
2

3
cos θs sin

(
π

2
φ

)
, (2.10)

where θs is the static contact angle. In Eqs. (2.1)–(2.9), bold face letters denote vector variables, ∇ denotes the gradient 
operator, n is the outward normal direction on boundary Γ , scalar operator ∂n = n · ∇ is the partial derivative along di-
rection n, τ is the boundary tangential direction, and vector operator ∇τ = ∇ − (n · ∇)n is the gradient along tangential 
direction, uw is the boundary wall velocity, uτ is the boundary fluid velocity in tangential direction. From (2.3), we have 
u = uτ on boundary Γ .

There are six non-dimensional parameters in this system. R is the Reynolds number, B denotes the strength of the 
capillary force comparing to the Newtonian fluid stress, M is the mobility coefficient, γ is a boundary relaxation coefficient, 
l(φ) is the ratio of domain size to boundary slip length, ε is the ratio between interface thickness and domain size. Similar 



Download English Version:

https://daneshyari.com/en/article/6931764

Download Persian Version:

https://daneshyari.com/article/6931764

Daneshyari.com

https://daneshyari.com/en/article/6931764
https://daneshyari.com/article/6931764
https://daneshyari.com

