
Journal of Computational Physics 283 (2015) 23–36

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Removal of pseudo-convergence in coplanar and 

near-coplanar Riemann problems of ideal 
magnetohydrodynamics solved using finite volume schemes

A.D. Kercher ∗, R.S. Weigel

School of Physics, Astronomy, and Computational Sciences, George Mason University, Fairfax, VA, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 June 2014
Received in revised form 12 November 2014
Accepted 21 November 2014
Available online 29 November 2014

Keywords:
Finite volume
Ideal MHD
Coplanar
Pseudo-convergence

Numerical schemes for ideal magnetohydrodynamics (MHD) that are based on the standard 
finite volume method (FVM) exhibit pseudo-convergence in which irregular structures no 
longer exist only after heavy grid refinement. We describe a method for obtaining solutions 
for coplanar and near-coplanar cases that consist of only regular structures, independent of 
grid refinement. The method, referred to as Compound Wave Modification (CWM), involves 
removing the flux associated with non-regular structures and can be used for simulations 
in two- and three-dimensions because it does not require explicitly tracking an Alfvén 
wave. For a near-coplanar case, and for grids with 213 points or less, we find root-square-
mean-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which 
non-regular structures will exist at all levels of grid refinement for standard FVMs, the 
RMSE is as much as 25 times smaller.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A Riemann problem is a one-dimensional initial value problem for a conservative system in which a single discontinuity 
separates two constant states. Riemann problems play an important role in fluid simulations; numerical algorithms in both 
computational fluid dynamics (CFD) and computational MHD use linear approximations of local Riemann problems for the 
computation of numerical fluxes [3,6,19].

The ideal MHD equations are more complex than the Euler equations of hydrodynamics. As a result, the number of 
possible structures is greater for ideal MHD. In addition, the system of equations is non-strictly hyperbolic, which makes 
non-regular structures such as intermediate shocks and compound waves possible.

Solutions of Riemann problems are composed of multiple structures that emanate away from a discontinuity. A solution 
is only considered physical if it satisfies entropy and evolutionary conditions [14]. The entropy is S = pg/ρ

γ , where pg
is the gas pressure, ρ is the density, and γ is the ratio of specific heats. The entropy condition states that the change in 
entropy across a shock is zero or larger. The evolutionary condition requires a shock to be structurally stable under small 
perturbations [14]. In hydrodynamics, the entropy and evolutionary conditions are equivalent.

In the past, intermediate shocks in ideal MHD have been considered unphysical because they are structurally unstable 
under small perturbations [15]. In recent years, their physicality has been reconsidered. Observations of heliospheric plasma 
and numerical simulations of bow shocks have provided evidence for their existence. Feng and Wang [11] reported that a 
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discontinuity observed by Voyager 2 in January 1979 was an intermediate shock. Chao et al. [4] identified an intermediate 
shock in Voyager 1 measurements in 1980. Intermediate shocks have been observed in numerical simulations of bow shocks 
in both two- and three-dimensions [7,8]. They were first observed in numerical simulations by Brio and Wu [3] whose 
results have been used extensively as a reference for numerical solutions of the ideal MHD equations. An exact nonlinear 
solver for ideal MHD that accounts for intermediate shocks was developed by Takahashi and Yamada [22] to investigate 
non-unique solutions to Riemann problems of ideal MHD. They showed that there were uncountably many non-regular 
solutions, but only one regular solution to the Riemann problem described by Brio and Wu.

The convergence rates for various implementations of the finite volume method on one-dimensional Riemann problems 
with non-unique solutions were computed by Torrilhon [24]. All implementations exhibited non-uniform convergence with 
respect to grid resolution. The schemes produced solutions that converged toward the non-regular solution until a certain 
level of grid refinement, at which point convergence was to the regular solution. This behavior was referred to as pseudo-
convergence, and numerical diffusion was identified as the cause. For the coplanar case, in which the rotation angle is 180◦ , 
we argue that convergence to the non-regular solution is expected to always occur, independent of grid resolution, because 
the transverse velocity and magnetic field are restricted to a single plane.

Because grids with more than 104 points are needed to obtain L1 errors on the order of 10−2, Torrilhon [24] sug-
gested using adaptive mesh refinement (AMR) to reduce the computational costs. AMR can be a powerful computational 
tool but is complex to implement, and for structured grids, it introduces non-conformity. High order weighted essentially 
non-oscillatory (WENO) schemes were investigated by Torrilhon and Balsara [26]. The schemes have a spatial accuracy of 
2r − 1 in regions where the solution is smooth. They reported results using r = 3 and r = 5, giving fifth and ninth order 
accuracy in space respectively. The higher order schemes converged to the regular solution on coarser grids and were able 
to obtain L1 errors on the order of 10−2 with half the grid resolution that lower order schemes require, but they still 
exhibited pseudo-convergence.

We introduce an alternative method for error reduction that does not exhibit pseudo-convergence, Compound Wave 
Modification (CWM), that requires modifying the flux from the finite volume approximation. The modification is done to 
the Harden–Lax–van Leer-Discontinuities (HLLD) [18] approximate Riemann solver implemented in the Athena MHD code 
[21,20]. The CWM solutions are compared with one-dimensional exact solutions for a near-coplanar case and the coplanar 
case. The exact solutions are found using a non-linear Riemann solver that is based on the method described by Dai and 
Woodward [6] with the rarefaction wave extension by Ryu and Jones [19].

CWM is only suitable for problems of ideal MHD since it is designed to converge to the solution containing regular 
waves. Evidence suggests non-regular waves are physically admissible for dissipative, non-ideal MHD. Intermediate shocks 
have been shown to form by wave steepening in the case of dissipative MHD [27,29]. Wu later argued that rotational 
discontinuities are unstable and will evolve into intermediate shocks in the case of dissipative MHD [28,30]. Time dependent 
intermediate shocks (TDIS), which do not satisfy the Rankine–Hugoniot, connect two near coplanar states and were also 
observed in dissipative MHD [31]. Torrilhon [24] compared the behavior of TDIS with pseudo-convergence, in which the 
regular solution is only obtained after long times in the case of TDIS and for fine grids in the case of pseudo-convergence. 
Inoue and Inutsuka [12] expanded on earlier finding on the physical admissibility of intermediate shocks in non-ideal MHD 
to the case of resistive MHD without viscosity. Intermediate shocks may be a physical solution for dissipative MHD therefore 
the use of CWM would not be appropriate.

The remainder of this paper is organized as follows. In Section 2.1, the MHD equations are presented. In Section 2.2, 
the classification of the possible discontinuities and shocks of ideal MHD are described. In Section 2.3, an overview of the 
numerical methods implemented in Riemann solvers is given. In Section 3, Riemann problems with non-unique solutions 
are introduced and the test cases are described. In Section 4, the CWM method is described and convergence to the correct 
solution is demonstrated.

2. Ideal MHD and numerical methods

2.1. Ideal MHD

The ideal MHD equations are an approximate description of the interaction between plasma flowing in a region 
with a magnetic field. They consist of the Euler equations of hydrodynamics and the magnetic induction equation, 
∂B
∂t = ∇ × (v × B) + η∇2B, for which the divergence-free condition ∇ · B = 0 is satisfied. The effects of resistivity, thermal 
conductivity, and viscosity are neglected. The equations are

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

∂(ρv)

∂t
+ ∇ ·

[
ρv ⊗ v +

(
pg + B2

2

)
I − B ⊗ B

]
= 0, (2.2)

∂ E

∂t
+ ∇ ·

[(
E + pg + B2

2

)
v − v · B ⊗ B

]
= 0, and (2.3)

∂B

∂t
+ ∇ · [v ⊗ B − B ⊗ v] = 0, (2.4)
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