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A multilevel approach to sample the potential energy surface in a path integral formalism 
is proposed. The purpose is to reduce the required number of ab initio evaluations of energy 
and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without 
compromising the overall accuracy. To validate the method, the internal energy and free 
energy of an Einstein crystal are calculated and compared with the analytical solutions. 
As a preliminary application, we assess the performance of the method in a realistic 
model—the FCC phase of dense atomic hydrogen, in which the calculated result shows 
that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be 
increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio
potential sampling, this method gives a well converged internal energy. The residual error 
in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation 
with the same number of beads. The vibrational free energy of the FCC phase of dense 
hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, 
which gives a result of about 0.51 eV/proton at a density of rs = 0.912.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The imaginary-time path integral provides an elegant and powerful formalism for studying the thermodynamic properties 
of many-body quantum systems [1,2]. By mapping a quantum particle onto an isomorphic classical polymer in which repli-
cas (or beads) are connected via harmonic springs [3] one avoids the cumbersome requirement of solving the Schrödinger 
equation for the wave functions. Many simulation techniques developed for classical system can then be applied to quantum 
systems directly [4–6].

Briefly, in quantum statistical mechanics, if we let H = T̂ + V̂ denote the Hamiltonian of the system, β = (kB T )−1 be the 
inverse of the temperature, then the canonical quantum partition function Z(β) = Tr exp(−βH). Using Trotter’s theorem [7]
for the canonical density operator

e−βH = lim
P→∞

(
e−(

β
2P )V̂ e− β

P T̂ e−(
β

2P )V̂ )P
, (1)

the partition function can be rewritten as a path integral
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Z(β) = Tr
(
e− β

P H)P =
∫

dr1 · · ·
∫

drPρ(r1, · · · , rP;β), (2)

where the density matrix ρ(r1, · · · , rP; β) = ∏P
j=1 ρ(r j, r j+1; β/P ), and

ρ(r1, · · · , rP;β) ∝ exp

(
−

P∑
j=1

mP

2β�2
(r j+1 − r j)

2 − β

P

P∑
j=1

V (r j)

)
, (3)

in which r j is the system coordinate at the jth time slice (or bead) with the cyclic condition r0 = rP. When P takes a finite 
value, the primitive approximation is obtained. The density matrix in this form of path integral can be sampled using Monte 
Carlo (PIMC) [2,4] or molecular dynamics (PIMD) [5,6] methods, in which any observables of a quantum system in an NVT
ensemble can be obtained via an ensemble average

〈A〉 = 〈A〉NVT = 1

Z(β)
Tr

[
A exp(−βH)

]
. (4)

In most applications of the path integral method in chemistry and condensed matter physics, the potential energy V (r)
is given in terms of inter-atomic interaction potentials. The potential function may be explicit or implicit. For the former the 
potential must be defined in advance, whereas it can be generated on-the-fly in the latter case, usually by ab initio methods 
such as density functional theory (DFT), and the method dubbed ab initio path integral method (AI-PI) [8–11].

Both implementations have their respective merits and demerits. Algorithms employing explicit potentials are usually 
much faster in computation. But an accurate potential is difficult to obtain, and might be subject to transferability problem 
[12], especially under high pressure conditions. On the other hand, though an ab initio potential can be high in accuracy 
and, in principle, without any transferability issue, the computational demand is huge. Therefore it will be beneficial if one 
can combine the merits of the two approaches. Namely, exploit explicitly predefined inter-atomic potential to reduce the 
total computational cost in the AI-PI method, but without sacrificing the overall accuracy.

From the construction of the path integral formalism as shown above, it is evident that the computational cost mainly 
comes from two sources: (i) evaluating the energy and forces of a single bead, and (ii) repeating the same process for 
all beads. Therefore, the computational cost will be diminished if one can reduce the required total number of beads. At 
low temperatures or for light elements, however, employing fewer beads usually implies a bad short-time propagator for 
the density matrix [2]. There have been developed some techniques to improve the short-time propagators so that a small 
number of beads can be used, such as the pairwise action approximation [2,13] and high-order composite factorizations in 
Eq. (1) [14–19]. Unfortunately, these require either a predefined interaction potential [2,13] and/or second or higher order 
potential derivatives [14–18], or having negative coefficients [19], and thus cannot be implemented in AI-PIMD directly 
[18]. A completely different approach, the ring polymer contraction (RPC) scheme proposed by Markland and Manolopoulos, 
shows great promise in this respect [20,21]. The challenge along this line is how to split and arrange the forces into 
short-range and long-range contributions in ab initio simulations [22]. We shall describe in this paper how to remove this 
difficulty by introducing an arbitrary splitting of a potential into additive parts, using simple model reference potential as a 
demonstration. Formally, our concept is equivalent to improving the short-time propagator by using a multilevel sampling 
technique with predefined approximate potentials. In the following discussions we will ignore the cost of evaluating the 
predefined approximate inter-atomic potential, since it is tiny by comparison with that for an ab initio potential. We discuss 
PIMD only, the extension to PIMC is straightforward.

Another method that is very similar, but not identical, to RPC is the mixed quantum-classical scheme and its improved 
version of mixed time slicing (MTS) procedure [23,24]. MTS is intended to optimize the quantization of different degrees 
of freedom (e.g., those of the light and heavy particles) using different number of beads [24], whereas RPC is purposed to 
accelerate the calculation by sampling the components of the potential that have different spatial variation with different 
number of beads, in which the procedure usually is carried out to all degrees of freedom in a parallel fashion [20]. The spirit 
and implementation of these two methods are not the same, but closely related. Though we will not discuss MTS in detail 
in this paper, an efficient combination of the two, which as an interesting extension of the proposed multilevel sampling 
scheme and a unification of RPC and MTS, will be given at the end of the paper.

The paper is organized as follows: the theoretical basis and algorithm are presented in the next section, in which both the 
multilevel technique for potential energy surface sampling and its implementation in PIMD, as well as the thermodynamic 
integration using PIMD (TI-PIMD) to calculate the free energy are discussed. In Section 3 we discuss the application to an 
Einstein crystal, for which the analytical solution is known and thus serves as a validation of the approach. A preliminary 
application to a realistic system is given in Section 3.2, where we apply the method to the FCC phase of dense monatomic 
hydrogen under high pressure. Section 4 concludes the paper with a discussion and a summary.

2. Theory and algorithm

2.1. Path integral molecular dynamics

The partition function for a canonical ensemble of distinguishable particles in quantum statistical mechanics, if expressed 
in the path integral formalism, is [1,2]
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