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The mass matrix for Gauss–Lobatto grid points is usually approximated by Gauss–Lobatto 
quadrature because this leads to a diagonal matrix that is easy to invert. The exact mass 
matrix and its inverse are full. We show that the exact mass matrix and its inverse differ 
from the approximate diagonal ones by a simple rank-1 update (outer product). They can 
thus be applied to an arbitrary vector in O (N) operations instead of O (N2).

© 2014 Elsevier Inc. All rights reserved.

1. Motivation

With the increased emphasis on higher-order methods for solving partial differential equations, methods that divide 
the domain into subdomains and represent the solution as an expansion in basis functions have become more and more 
important. These include spectral element methods (penalty-based or continuous) and discontinuous Galerkin methods. 
To handle nonlinearities, collocation schemes are often the method of choice. In such methods, the expansion coefficients 
are replaced by function values at specially chosen grid points as the fundamental unknowns. In one dimension, the grid 
points are universally chosen to be the Gaussian quadrature points corresponding to the basis functions. This connects the 
expansion coefficients in spectral space to the function values in physical space by a discrete transform and leads to rapidly 
convergent and stable methods for smooth solutions.

In two and three dimensions, if the subdomains can be mapped to squares or cubes, then basis functions that are tensor 
products of one-dimensional basis functions are almost always used because of the resulting simplification of element-wise 
operations. Unless the problem requires the flexibility of grids constructed using triangles or tetrahedra, this approach is 
again almost universal. The key result of this note applies to any one-dimensional set of grid points that define a Gaussian 
quadrature or are part of a tensor product of such grid points. It does not apply to typical basis sets for triangles, where the 
quadrature rule and the choice of grid points are not directly connected.

For many problems, the simplest formulation uses Gauss–Lobatto collocation points since having grid points on the 
boundaries makes it easy to impose boundary conditions. In such a formulation, the exact mass matrix and its inverse are 
full. Thus it is natural to approximate the mass matrix by Gauss–Lobatto quadrature, which leads to a diagonal matrix that 
is easy to invert. By contrast, using Gauss collocation points with ordinary Gauss quadrature gives the exact mass matrix, 
which is diagonal. This makes the comparison between the two choices tricky. On the one hand, Gauss–Lobatto avoids 
interpolation from the interior points to the boundaries, but on the other hand it may require more collocation points 
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to achieve the same accuracy as using Gauss points if you use the approximate mass matrix for efficiency. This point is 
discussed further in Section 4.3.

We show that there is a simple expression for the exact mass matrix and its inverse for Gauss–Lobatto collocation. 
Multiplying a vector by one of these expressions can be done in O (N) operations, just as for a diagonal matrix. This 
suggests that efficiency versus accuracy results for implementations of spectral methods should be reconsidered. Of course, 
for large values of N the spectral convergence of Gaussian quadrature is likely to make the difference between the exact 
and approximate mass matrices irrelevant. However, for small or moderate N the situation is not clear.

2. Spectral approximation

This section summarizes some standard material [1–4] on spectral approximations in order to derive the key result in 
the next section.

Consider approximations of functions by expansions in orthogonal polynomials:

u(x) =
N∑

k=0

bk pk(x) (1)

where

1∫
−1

p j(x)pk(x)W (x)dx = hkδ jk (2)

The associated inner product is

〈u|v〉 ≡
1∫

−1

u(x)v(x)W (x)dx (3)

For simplicity, we will take the weight function W (x) = 1, in which case the basis functions are Legendre polynomials. 
However, almost everything in this note goes through for other systems of orthogonal polynomials.

The set of orthogonal polynomials determines a Gaussian quadrature formula with weights w j and grid points x j :

1∫
−1

f (x)dx ≈
N∑

j=0

w j f (x j) (4)

The Gauss–Lobatto version of this quadrature arranges for the endpoints of the interval to be included in the set x j . Having 
collocation points on the boundary can make the application of boundary conditions easier. The quadrature (4) is exact for 
polynomials of degree no more than 2N + 1 for the Gauss case and 2N − 1 for the Gauss–Lobatto case. Use the quadrature 
to define the discrete inner product as the analog of (3):

〈u|v〉G =
N∑

j=0

w ju(x j)v(x j) (5)

The continuous and discrete inner products are the same if the product uv is a polynomial of degree no more than 2N + 1
(Gauss) or 2N − 1 (Gauss–Lobatto).

Eq. (1) is called a modal expansion. In collocation methods, instead of regarding the N + 1 modal coefficients bk as 
fundamental, we choose a set of N +1 collocation points x j . Typically these are the Gauss or Gauss–Lobatto points associated 
with the orthogonal polynomials. The corresponding nodal expansion is

u(x) =
N∑

j=0

u j� j(x) (6)

where u j ≡ u(x j). The basis functions � j(x) are called cardinal functions and are simply the Lagrange interpolating polyno-
mials based on the grid points x j , with � j(xi) = δi j :

� j(x) =
N∏

i=0
i �= j

x − xi

x j − xi
(7)

The nodal expansion (6) is just an approximation of a continuous function u(x) by its interpolating polynomial, so 
that u(xi) = ui . Note that in the discrete inner product (5) of any two continuous functions, we may replace u, say, by its 
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