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localised areas of interest. This is made possible by solving the full Vlasov equation in one
region while the remaining area is treated by a 5-moment two-fluid code. In such a treat-
ment, the main challenge of coupling kinetic and fluid descriptions is the interchange of
physically correct boundary conditions between the different plasma models. In contrast

IC(ZJ./JV;;;? to other treatments, we do not rely on any specific form of the distribution function, e.g.
Vlasov equation a Maxwellian type. Instead, we combine an extrapolation of the distribution function and
Multifluid a correction of the moments based on the fluid data. Thus, throughout the simulation
GPU both codes provide the necessary boundary conditions for each other. A speed-up factor
Whistler waves of around 10 is achieved by using GPUs for the computationally expensive solution of

Reconnection

GEM the Vlasov equation. Additional major savings are obtained due to the coupling where the

amount of savings roughly corresponds to the fraction of the domain where the kinetic

equations are solved. The coupled codes were then tested on the propagation of whistler

waves and on the GEM reconnection challenge.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

For many relevant problems in plasma physics, the plasma can be considered nearly collisionless. In these cases, the
Vlasov-Maxwell system is sufficient for a complete description of the physically important phenomena. Nevertheless, it is
close to impossible to numerically solve the Vlasov equation for global problems on fluid scales due to the vast amount of
memory needed to resolve a 6-dimensional phase-space. However, in many situations a complete kinetic description is not
necessary and computationally much less expensive fluid models based on the moments of the distribution function are
sufficient. In addition, plasmas are typical multi-scale phenomena. Often there are only localised and small regions, where a
kinetic description is needed, whereas the rest of the domain can be described by means of a fluid model. This separation
of scales can be found in many typical problems of plasma physics, such as reconnection in the magnetotail of the earth,
solar flares or typical phenomena in tokamaks. To determine what amount of computational savings coupling techniques
might provide, a rough estimation of the numerical costs can be made on the basis of spatial scales. To do this, both the
computational effort for the fluid region and the overhead for the coupling itself can be assumed as negligible compared
to the costs of the kinetic part of the simulation. Thus the fraction of the domain where kinetic effects occur can indicate
how much computational time might be saved. This fraction can be estimated on the basis of typical plasma parameters.
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The most relevant scales are determined by the ion skin depth, below which the dynamics of ions and electrons decouple,
and the ion gyro radius, which is especially important in the context of collisionless plasmas.

In the magnetotail of the earth, kinetic effects are important in and around the current sheet, where reconnection takes
place. In an example of a typical setup for this problem given by Birn et al. [1], the current sheet—and thus the kinetic
region—covers around 10% of the computational domain. In a typical tokamak with an overall size ~1 m, the ion skin
depth is ~5 cm (see Woods [2]). The ion gyro radius is even one order of magnitude smaller. Thus, taking into account the
rotationally symmetric geometry of a tokamak and the magnetic field therein, the fraction of the domain where localised
kinetic effects as reconnection might take place is likely to scale with the fraction of 5 cm/1 m and can thus be expected
to be only 5% of the domain, to give a very rough estimation of the order of magnitude. In a solar flare, the ratio is even
smaller: A typical size of ~107 m compares to an ion skin depth of about 10 m (see for example Ramesh et al. [3]). We
stress that this is a rough estimate assuming e.g. that there are isolated reconnection sites and no turbulent reconnection
events where the turbulence scales meet the kinetic scales. In this situation, the fraction of the simulation domain occupied
by the kinetic region would be substantially larger.

If the kinetic regions are known, this additional information might be used to reduce the computational costs drastically
by restricting the expensive kinetic simulation to this smaller area and using a suitable fluid model for the rest of the
domain. There have been several approaches to exploit this ansatz in numerical schemes. In the works of Degond et al.
[4], Dellacherie [5], Goudon et al. [6], Klar et al. [7], and Le Tallec and Mallinger [8] methods for coupling the Boltzmann
equation to some kind of fluid model like the Navier-Stokes or Euler equations are addressed. Sugiyama and Kusano [9] and
especially Daldorff et al. [10] describe the coupling of PIC and MHD models, Markidis et al. [11] show a way to combine PIC
and fluid models, and Kolobov and Arslanbekov [12] describe the transition from neutral gas models to models of weakly
ionised plasmas with respect to coupling kinetic and fluid equations. Schulze et al. [13] use coupling techniques in the
context of epitaxial growth.

Most of these schemes are based on the strong assumption that the distribution function is close to Maxwellian in the
vicinity of the coupling border and use this approximation to generate boundary conditions for the kinetic region. In other
approaches, an artificial field is introduced that expresses the deviation from a Maxwellian and is coupled to the underlying
equations [4], or the fluxes at the boundary are used for the coupling [8].

This paper presents a different mechanism for coupling the Vlasov equation with a five-moment model and the full
Maxwell equations. Our method is easy to implement and does not rely on any specific assumptions with respect to the
distribution function near the coupling border. In addition, no extensive transition region between the kinetic and fluid
domains is required.

The rest of this paper is organised as follows: After the physical models have been described in Section 2, the numerical
schemes are presented in Section 3. The coupling procedure is explained in Section 4. Technical details on CUDA graph-
ics cards and their use on the Vlasov code as well as parallel programming issues are discussed in Section 5. Finally, in
Sections 6 and 7, first numerical results are presented and discussed.

2. Physical models
Consider a non-relativistic plasma consisting of different particle species s. The Vlasov equation
fs V- Vafs b S B4V B Vufs =0 (1)
describes the time evolution of the phase-space density fs(x,v,t), where E is the electric field, B is the magnetic field, g

is the charge, and m; is the mass per particle. By calculating the moments of f; with respect to v, we can derive important
physical quantities describing the plasma:

the mass density Ps = Mg / fsd3v, (2)
the momentum density ug =mg /vfsd3v, (3)
. ms 243
and the energy density & = > v- fed’v. (4)
Their time dependence can be calculated from the Vlasov equation (1) and is given by:
dps=—V - us (5)
U
oug =—V - <¥+Ps> +£(ng+ll5 x Bs) (6)
Ps mg
EL+P
3E=—V- (Sihus) —V-Q+ By (7)
Ps ms

where Ps is the pressure tensor and Qs is the heat flux tensor. These quantities must be provided in order to close the
system.



Download English Version:

https://daneshyari.com/en/article/6931840

Download Persian Version:

https://daneshyari.com/article/6931840

Daneshyari.com


https://daneshyari.com/en/article/6931840
https://daneshyari.com/article/6931840
https://daneshyari.com/

