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We consider a hyperbolic system with uncertainty in the boundary and initial data. Our 
aim is to show that different boundary conditions give different convergence rates of the 
variance of the solution. This means that we can with the same knowledge of data get a 
more or less accurate description of the uncertainty in the solution. A variety of boundary 
conditions are compared and both analytical and numerical estimates of the variance of 
the solution are presented. As an application, we study the effect of this technique on 
Maxwell’s equations as well as on a subsonic outflow boundary for the Euler equations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In most real-world applications based on partial differential equations, data is not perfectly known, and typically varies 
in a stochastic way. There are essentially two different techniques to quantify the resulting uncertainty in the solution. 
Non-intrusive methods [1–7] use multiple runs of existing deterministic codes for a particular statistical input. Standard 
quadrature techniques, often in combination with sparse grid techniques [8] can be used to obtain the statistics of interest. 
Intrusive methods [9–16] are based on polynomial chaos expansions leading to systems of equations for the expansion co-
efficients. This implies that new specific non-deterministic codes must be developed. The statistical properties are obtained 
by a single run for a larger system of equations. There are also examples of semi-intrusive methods [18,17]. The different 
procedures are compared in [19,20] and a review is found in [21].

In this paper we take a step back from the technical developments mentioned above and focus on fundamental questions 
for the governing initial boundary value problem, and in particular on the influence of boundary conditions. Our aim is to 
minimize the uncertainty or variance of the solution for a given stochastic input. The variance reduction technique in this 
paper is closely related to well-posedness of the governing initial boundary value problem. In particular it depends on the 
sharpness of the energy estimate, which in turn depends on the boundary conditions.
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The technique used in this paper is directly applicable to hyperbolic linear problems such as for example the Maxwell’s 
equations, the elastic wave equations and the linearized Euler equations where the uncertainty is known and limited to 
the data of the problem. The theoretical derivations are for simplicity and clarity done in one space dimension and for one 
stochastic variable. The extension to multiple space dimensions and stochastic variables is straightforward and would add 
more technical details but no principal problems.

We begin by deriving general strongly well posed boundary conditions for our generic hyperbolic problem [22,23,32,33]. 
These boundary conditions are implemented in a finite difference scheme using summation-by-parts (SBP) operators [24,
29–31] and weak boundary conditions [38–41]. Once both the continuous and semi-discrete problems have sharp energy 
estimates, we turn to the stochastic nature of the problem.

We show how to use the previously derived estimates for the initial boundary value problem in order to bound and 
reduce the variance in the stochastic problem. Finally we exemplify the theoretical development by numerical calculations 
where the statistical moments are computed by using the non-intrusive methodology with multiple solves for different 
values of the stochastic variable [36,37]. The statistical moments are calculated with quadrature formulas based on the 
probability density distribution [34,35].

The remainder of the paper proceeds as follows. In Section 2 the continuous problem is defined and requirements for 
well-posedness on the boundary operators for homogeneous and non-homogeneous boundary data are derived. In Section 3
we present the semi-discrete formulation and derive stability conditions. Section 4 presents the stochastic formulation of the 
problem together with estimates of the variance of the solution. We illustrate and analyze the variance for a model problem 
in Section 5. In Section 6 we study the implications of this technique on the Maxwell’s equations and on a subsonic outflow 
boundary conditions for the Euler equations. Finally in Section 7 we summarize and draw conclusions.

2. The continuous problem

The hyperbolic system of equations with stochastic data that we consider is,

ut + Aux = F (x, t, ξ) 0 ≤ x ≤ 1, t ≥ 0

H0u = g0(t, ξ) x = 0, t ≥ 0

H1u = g1(t, ξ) x = 1, t ≥ 0

u(x,0, ξ) = f (x, ξ) 0 ≤ x ≤ 1, t = 0, (1)

where u = u(x, t, ξ) is the solution, and ξ is the variable describing the stochastic variation of the problem. In general ξ is 
a vector of multiple stochastic variables, but for the purpose in this paper, one suffice. H0 and H1 are boundary operators 
defined on the boundaries x = 0 and x = 1. A is a symmetric M × M matrix which is independent of ξ . F (x, t, ξ) ∈ R

M , 
f (x, ξ) ∈ R

M , g0(t, ξ) ∈ R
M and g1(t, ξ) ∈ R

M are data of the problem.

Remark 1. The limitation to one space and stochastic dimension in (1) is for clarity only. Multiple space and stochastic 
dimensions add to the technical complexity (for example more complicated quadrature to obtain the statistics of interest), 
but no principal problems would occur.

In this initial part of the paper, we do not focus on the stochastic part of the problem, that will come later in Section 4. 
We derive conditions for (1) to be well posed, and focus on the boundary operators H0 and H1.

2.1. Well-posedness

Letting F = 0, we multiply (1) by uT and integrate in space. By rearranging and defining ‖u‖2 = ∫
Ω

uT udx we get,

‖u‖2
t = (

uT Au
)

x=0 − (
uT Au

)
x=1. (2)

Due to the fact that A is symmetric, we have

A = XΛX T , X = [X+, X−], Λ =
[

Λ+ 0

0 Λ−
]

. (3)

In (3), X+ and X− are the eigenvectors related to the positive and negative eigenvalues respectively. The eigenvalue matrix Λ

is divided into diagonal block matrices Λ+ and Λ− containing the positive and negative eigenvalues respectively. Using (2)
and (3) we get,

‖u‖2
t = (

X T u
)T

0 Λ
(

X T u
)

0 − (
X T u

)T
1 Λ

(
X T u

)
1. (4)

The boundary conditions we consider are of the form

H0u = (
X T+ − R0 X T−

)
u0 = g0, x = 0

H1u = (
X T− − R1 X T+

)
u1 = g1, x = 1, (5)
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