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Polynomial chaos expansions are used to reduce the computational cost in the Bayesian 
solutions of inverse problems by creating a surrogate posterior that can be evaluated 
inexpensively. We show, by analysis and example, that when the data contain significant 
information beyond what is assumed in the prior, the surrogate posterior can be very 
different from the posterior, and the resulting estimates become inaccurate. One can 
improve the accuracy by adaptively increasing the order of the polynomial chaos, but the 
cost may increase too fast for this to be cost effective compared to Monte Carlo sampling 
without a surrogate posterior.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

There are many situations in science and engineering where one needs to estimate parameters in a model, for example, 
the permeability of a porous medium in studies of subsurface flow, on the basis of noisy and/or incomplete data, e.g. pres-
sure measurements. In the Bayesian approach, prior information and a likelihood function for the data are combined to 
yield a posterior probability density function (pdf) for the parameters. This posterior can be approximated by Monte Carlo 
sampling and in principle yields all the information one needs, in particular the posterior mean (see e.g. [14,25,26]). How-
ever, the sampling may require the evaluation of the posterior for many values of the parameters, which in turn requires 
repeated solution of the forward problem. This can be expensive, especially in complex high-dimensional problems.

Polynomial chaos expansions (PCE) and generalized PCE provide an approximate representation of the solution of the for-
ward problem (see e.g. [12,15,21,31]) which can be used to reduce the cost of Bayesian inverse problems [2,17–19,23]. The 
PCE leads to an approximate representation of the posterior, called a “surrogate posterior”, which can generate a large num-
ber of samples at low cost. However, the resulting samples approximate the surrogate posterior, not the posterior, so that 
the accuracy of estimates based on these samples depends on how well the surrogate posterior approximates the posterior.

We study how the accuracy of the surrogate posterior depends on the data, and show that when the data are informa-
tive (in the sense that the posterior differs significantly from the prior), then the surrogate posterior can be very different 
from the posterior and PCE-based sampling is either inaccurate or prohibitively expensive. Specifically, we examine the 
behavior of PCE-based sampling in the small noise regime [28,29], and report results from numerical experiments on an 
elliptic inverse problem for subsurface flow. In the example, a sufficiently accurate PCE requires a high order, which makes 
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PCE-based sampling expensive compared to sampling the posterior directly, without a PCE. Other limitations of PCE have 
been reported and discussed in other settings as well, e.g. in uncertainty quantification [3,5,13], and statistical hydrodynam-
ics [6,10].

The paper is organized as follows. In Section 2 we explain the use of PCE in the Bayesian solution of inverse problems. In 
Section 3 we analyze the accuracy of the surrogate posterior in the small noise regime. In Section 4 we study the efficiency 
of PCE-based sampling with numerical examples. Section 5 provides a summary. Proofs and derivations can be found in 
Appendix A.

2. Polynomial chaos expansion for Bayesian inverse problems

Consider the problem of estimating model parameters θ ∈R
m from noisy data d ∈ R

n such that:

d = h(θ) + η, (1)

where h :Rm → R
n is a smooth nonlinear function describing how the parameters affect the data, and where η ∼ pη(·) is a 

random variable with known pdf that represents uncertainty in the measurements. Here, h is the model and often involves 
a partial differential equation (PDE), or a discretization of a PDE, in which case the evaluation of h can be computationally 
expensive. Following the Bayesian approach, we assume that prior information about the parameters is available in form 
of a pdf p0(θ). This prior and the likelihood p(d|θ) = pη(d − h(θ)), defined by (1), are combined in Bayes’ rule to give the 
posterior pdf

p(θ |d) = 1

γ (d)
p0(θ)p(d|θ), (2)

where γ (d) = ∫
p0(θ)p(d|θ)dθ is a normalizing constant (the marginal probability of the data). For simplicity, we assume 

throughout this paper that η ∼ N (0, σ 2 In) is Gaussian with mean zero and variance σ 2 In , and that the prior is p0(θ) =
N (0, Im) (here, Ik is the identity matrix of order k). These assumptions may be relaxed, however we can make our points 
in this simplified setting. In this context, it is important to point out that we make no assumptions about the underlying 
(numerical) model which, in most cases, is nonlinear.

In practice, Monte Carlo (MC) methods such as importance sampling or Markov chain Monte Carlo (MCMC) are used to 
represent the posterior numerically (see e.g. [7,16]). Most MC sampling methods require repeated evaluation of the posterior 
for many instances of θ . Since each posterior evaluation involves a likelihood evaluation, many evaluations of the model are 
needed, which can be computationally expensive.

To reduce the computational cost of MC sampling one can approximate the model by a truncation of its PCE, because 
the evaluation of the truncated PCE is often less expensive than the evaluation of the model (e.g. solving a PDE). It is 
natural to construct the PCE before the data are available, i.e. one expands h using the prior. With a Gaussian prior one 
uses (multivariate) Hermite polynomials, which form a complete orthonormal basis in L2(Rm, p0). Let i = (i1, . . . , im) ∈ N

m

be a multi-index and let θ = (θ1, θ2, . . . , θm) be the parameter we wish to estimate. The multivariate Hermite polynomials 
{Φi(θ) : |i| = i1 + · · · + im < ∞} are defined by

Φi(θ) = Hi1(θ1) · · · Him(θm),

where Hk(x) is the normalized kth-order Hermite polynomial (see e.g. [24,31]). Assuming that h ∈ L2(Rm, p0) we define the 
Nth-order PCE of h by

hN(θ) =
∑
|i|≤N

aiΦi(θ),

where the coefficients ai are given by

ai = E
[
h(θ)Φi(θ)

] =
∫

h(θ)Φi(θ)p0(θ)dθ.

As N → ∞, hN converges to h in L2(Rm, p0). The rate of convergence depends on the regularity of h and is estimated by 
(see e.g. [32])

‖h − hN‖L2(Rm,p0) ≤ C N− k
2 ‖h‖k,2, (3)

where C is a constant depending only on m and k, and ‖h‖k,2 is the weighted Sobolev norm defined by ‖h‖2
k,2 =∑

|α|≤k ‖Dαh‖2
L2(Rm,p0)

with Dαh = ∂ |α|
∂
α1
x1

···∂αm
xm

h. For the remainder of this paper we assume enough regularity of h, so that 

‖h − hN‖L2(Rm,p0) converges quickly as N increases.
In PCE-based sampling for Bayesian inverse problems, one replaces the model h in (1) by its truncated PCE hN , and 

obtains the surrogate posterior

pN(θ |d) = 1

γN(d)
p0(θ)pη

(
d − hN(θ)

)
, (4)
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