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The development of smooth particle magnetohydrodynamic (SPMHD) has significantly 
improved the simulation of complex astrophysical processes. However, the preservation 
the solenoidality of the magnetic field is still a severe problem for the MHD. A formulation 
of the induction equation with a vector potential would solve the problem. Unfortunately 
all previous attempts suffered from instabilities. In the present work, we evolve the vector 
potential in the Coulomb gauge and smooth the derived magnetic field for usage in the 
momentum equation. With this implementation we could reproduce classical test cases in 
a stable way. A simple test case demonstrates the possible failure of widely used direct 
integration of the magnetic field, even with the usage of a divergence cleaning method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, not only the presence but the morphology of magnetic fields in galaxies has been determined [2]. It 
represents a huge scientific challenge, as this is a new opportunity to understand how the magnetic field is related to the 
astrophysical hosts, their history and properties.

A possible explanation for the magnetic field amplification is the action of a dynamo driven by turbulence and large scale 
gas motions [23,1,19], where the unknown initial seed field is washed out by the turbulent character of the flow. Numerical 
simulations of evolving galaxies should help to understand the main properties of the magnetic field amplification with the 
observed morphology.

The success of cosmological simulations using SPH methods motivates the application of that technique also for the 
MHD case [10]. The direct implementation of the induction equation with the magnetic field unfortunately suffers from 
the preservation of solenoidality. The artificial growth of ∇ · B in these schemes is usually reduced by a more or less 
artificial cleaning of B. The direct integration of B with or without cleaning may lead to unrealistic numerical growth of the 
magnetic field as it occurs in the example described in Section 3 or in Kotarba et al. [13]. There is no ∇ · B = 0 preserving 
scheme known for SPMHD integrating the magnetic field B directly from the induction equation. Changing the integration 
variable from the magnetic field to the vector potential A with B = ∇ × A solves the problem in a natural way. A vector 
potential formulation in SPH was previous studied in detail by Price [17]. The implementation was working for one and two 
dimensional problems, but failed in three dimensions.
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In the following sections we present an application of the vector potential in SPMHD, which overcomes the previous 
problems. In Section 2 we shortly describe our implementation, followed by the analysis of some test cases in Section 3. 
Finally we discuss possible implications in Section 4 and we present our conclusions in Section 5.

2. SPH implementation

Throughout this work we will use the SPMHD version of Gadget-3 [20], where the ideal MHD is solved following the 
induction equation in the form

dB

dt
= (B · ∇)v − B(∇ · v) (1)

in which, we assume the ∇ · B = 0 constraint is valid, by taking special care on reducing it [20,22].
Price [17] studied carefully the possible SPH vector potential formulation, we follow it and use it as a starting point. The 

definition of the magnetic field and the evolution of the vector potential can be summarized as follows:

B = ∇ × A (2)

dA

dt
= v × ∇ × A + (v · ∇)A − ∇φ (3)

where φ is an arbitrary scalar representing the freedom to choose a special gauge. There is the freedom of choosing different 
gauges for each time step if desired to improve the numerics, but keeping track of a proper φ evolution of a given particular 
gauge.

In tensor form the components of Eq. (3) simplify to

dAi

dt
= v j ∂ A j

∂xi
− ∂φ

∂xi
(4)

where i, j are component indexes and summation over double indices is used.
In the SPH framework this equation is written as follows,

dAi
a

dt
= fa

ρa

[
N∑

b=1

−mb
(
φi

ab − v j
a A j

ab

)
∂W i

ab

]
(5)

where a, b are particle indexes, fa is the correction factor that arises from the use of variable smoothing lengths, the A j
ab

is the difference between the potential of neighboring particles and ∂W i
ab is the kernel gradient operator between particles 

(for more details refer to Dolag and Stasyszyn [10]).
As we mentioned before, the gauge choice does not manifest in the magnetic field, but in the evolution of the vector 

potential. For example, if we use the Coulomb gauge, which means ∇ · A = 0 for all points of space and time, we have to 
take care of fulfilling this requirement. Therefore, we face a similar problem as keeping ∇ · B = 0, that has already been 
extensively studied [20,22]. We take a similar approach, using a cleaning scheme [9] originally thought to lower the ∇ · B
errors, but applied to A in order to ensure ∇ · A = 0. The solution of the problem is equivalent to choose a modified 
pseudo-Lorenz or velocity gauge [12,6], with an additional damping term. Note, that keeping ∇ · A = 0 will also simplify 
the calculation of the diffusion terms for the non-ideal MHD equations. The evolution of the gauge is achieved through 
following equations

dφ

dt
= −c2

h ∇ · A − ch
φ

h
− ∇ · v φ

2
(6)

where ch is the characteristic signal velocity, h is the smoothing length and we add the final term, introduced by Tricco and 
Price [22] that takes into account compression or expansion of the fluid. Tricco and Price [22] found that this additional 
term, improves conservation of energy and in particular for the divergence cleaning is crucial the symmetrization of the SPH 
operators. In our case we use a “differential” non-symmetric SPH operator and we do not apply any limiter as in Stasyszyn et 
al. [20], and seems sufficient to achieve stability. However, when coupling the energy evolution using a symmetric operator 
can improve the energy conservation.

Therefore the gauge evolution in SPH form writes as Eq. (6), and the differential operators takes the form for the diver-
gence case as:

∇ · A = fa

ρa

[
N∑

b=1

mb Ai
ab∂W i

ab

]
(7)
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