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To ensure the discrete maximum principle or solution positivity in finite volume schemes, 
diffusive flux is sometimes discretized as a conical combination of finite differences. 
Such a combination may be impossible to construct along material discontinuities using 
only cell concentration values. This is often resolved by introducing auxiliary node, edge, 
or face concentration values that are explicitly interpolated from the surrounding cell 
concentrations. We propose to discretize the diffusive flux after applying a local piecewise 
linear coordinate transformation that effectively removes the discontinuities. The resulting 
scheme does not need any auxiliary concentrations and is therefore remarkably simpler, 
while being second-order accurate under the assumption that the structure of the domain 
is locally layered.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Diffusion in an anisotropic discontinuous environment plays a role in various fields of engineering, such as subsurface 
flows. Steady state diffusion of a solute with concentration C in a bounded domain Ω ⊂ R

3 is modeled by the following 
boundary problem:

∇ · u = g, (1)

u = −D∇C, (2)

C = gD on ΓD, (3)

u · n = gN on ΓN, (4)

u · n = Ψ (C − gR) on ΓR, (5)

where u is the velocity, g is the volumetric source term, n is the unit vector normal to ∂Ω pointing outwards, Ψ is the 
transfer coefficient, ΓD ∪ΓR = ΓD ∪ ΓR, ΓD ∪ΓN ∪ΓR = ∂Ω , ΓD ∪ΓR �= ∅, and ΓD, ΓN, and ΓR are mutually disjoint. Diffusion 
tensor D is symmetric, positive definite, and piecewise continuous. Connected subsets of Ω in which D is continuous are 
called material zones, and the interfaces between them are referred to as material interfaces. Presumably, mesh faces coincide 
with material interfaces, i.e. D is continuous within mesh cells.
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Fig. 1. It is assumed that the structure of the domain is locally layered.

Various numerical schemes are used to solve this problem. Most of them produce non-physical oscillations and negative 
concentration values in particular cases. Nevertheless, certain schemes are specifically designed to address these issues. One 
such finite volume scheme appeared in [1] and was further developed in [2–9]. These schemes do not satisfy the maximum 
principle, but they guarantee that the concentration does not become negative. A recent review of linear and non-linear 
finite volume schemes for diffusion is found in [10].

In addition to the primary concentration unknowns associated with mesh cells, these schemes use auxiliary concentration 
values located in faces and elsewhere. Face concentration values are easily determined from the continuity, but some kind 
of interpolation must be used to determine other auxiliary values. The interpolation method presented in [7] performs this 
task using piecewise linear interpolation and convex combinations. It satisfies the maximum principle and is second order 
accurate even when it uses interpolation nodes at the opposite sides of a material discontinuity. Since a simple brute force 
search for collocation points that form a convex combination can result in a combinatorial explosion, in [7] we proposed a 
complex but efficient alternative search algorithm based on Delaunay triangulations.

In this paper we deploy the piecewise linear transformation introduced in [7] directly in the velocity decomposition, 
without any auxiliary concentration variables. Such a scheme is simpler than [7] because the complicated construction of 
convex combinations is avoided. In addition, fluxes over discontinuities do not need special treatment, resulting in further 
simplification.

The paper is organized as follows: in Section 2 we explain how to use the piecewise linear transformation to obtain 
a one-side flux approximation. In Section 3 the one-side fluxes are combined in the usual fashion to obtain a two-point 
scheme. Euler implicit temporal discretization of the time-dependent problem is presented in Section 4. Numerical tests 
presented in Section 5 show that the accuracy and the convergence rate do not change much in comparison to [7], and thus 
the simpler scheme should be the method of choice. Moreover, it is shown that a single iteration is sufficient to maintain 
the second order accuracy in a time-dependent problem.

2. Fluxes and piecewise linear transformation

The piecewise linear transformation used here to approximate the flux was constructed in [7]. The main steps are re-
peated for convenience.

We assume that some neighborhood of point x0 ∈ Ω consists of layers Ω−m, . . . , Ωn , m ≥ 0, n ≥ 0, with interfaces that are 
smooth so that they can be locally approximated by planes (see Fig. 1). This assumption was used in [7] in order to derive 
the piecewise linear transformation used in this paper. As shown by an example in [7], if this assumption does not hold then 
the accuracy is reduced. Even though other authors do not usually state the interface smoothness requirement explicitly, 
it is implied by the solution smoothness assumption. A non-smooth material interface introduces singularities with respect 
to the solution differentiability. Unless these singularities are explicitly treated, the accuracy of this or any other numerical 
scheme is reduced. Thus the interface smoothness assumption is not a limitation of our scheme in comparison with other 
methods.

The diffusion tensor is allowed to have discontinuities between layers, but it is assumed to be constant or almost constant 
within each layer, thus D|Ωi = Di . This assumption needs to hold only locally — the diffusion tensor is allowed to vary 
smoothly within layers on a larger scale. We assume that the concentration changes linearly in each layer

C(x) = Ci + Gi · (x − x0), x ∈ Ω i . (6)

This function must satisfy two conditions:

1. It must be continuous, and
2. The flux through each interface must be continuous.
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