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New Hermite Weighted Essentially Non-Oscillatory (HWENO) interpolants are developed 
and investigated within the Multi-Moment Finite-Volume (MMFV) formulation using the 
ADER-DT time discretization. Whereas traditional WENO methods interpolate pointwise, 
function-based WENO methods explicitly form a non-oscillatory, high-order polynomial 
over the cell in question. This study chooses a function-based approach and details how 
fast convergence to optimal weights for smooth flow is ensured. Methods of sixth-, 
eighth-, and tenth-order accuracy are developed. These are compared against traditional 
single-moment WENO methods of fifth-, seventh-, ninth-, and eleventh-order accuracy to 
compare against more familiar methods from literature. The new HWENO methods improve 
upon existing HWENO methods (1) by giving a better resolution of unreinforced contact 
discontinuities and (2) by only needing a single HWENO polynomial to update both the 
cell mean value and cell mean derivative.
Test cases to validate and assess these methods include 1-D linear transport, the 1-D 
inviscid Burger’s equation, and the 1-D inviscid Euler equations. Smooth and non-smooth 
flows are used for evaluation. These HWENO methods performed better than comparable 
literature-standard WENO methods for all regimes of discontinuity and smoothness in all 
tests herein. They exhibit improved optimal accuracy due to the use of derivatives, and 
they collapse to solutions similar to typical WENO methods when limiting is required. The 
study concludes that the new HWENO methods are robust and effective when used in the 
ADER-DT MMFV framework. These results are intended to demonstrate capability rather 
than exhaust all possible implementations.

Published by Elsevier Inc.

1. Introduction

Systems of conservation laws govern the evolution of many important physical phenomena, and they form the core 
of many simulation codes. An algorithm that numerically solves a non-linear system of conservation laws must balance 
multiple constraints, including accuracy, robustness, runtime, and parallel efficiency. Weighted Essentially Non-Oscillatory 
(WENO) methods [1,2] are good candidates in balancing these constraints because they simultaneously allow an optimal 
accuracy over a given stencil of cells, while providing robustness only where needed. WENO methods provide requisite 
damping where needed without additional parallel data transfers, which is not generally true for hyperdiffusive filters and 
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Flux Corrected Transport. ADER time discretizations also balance these constraints well, as they require no quadrature in 
the spatial discretization and no steps/stages in the time discretization. Combining ADER and WENO is a natural choice 
because only one WENO limiting is needed per large time step, and the overhead of WENO versus traditional reconstruction 
is relatively smaller with ADER.

Hermite WENO (HWENO) methods [3–6] use not only a stencil of values but also derivatives to reconstruct, providing 
a more accurate optimal reconstruction than standard WENO methods. Also, HWENO methods can perform multi-moment 
simulation at significantly larger time steps than Galerkin methods, and they are much more easily limited than Galerkin 
methods. In fact, the maximum stable CFL of HWENO ADER methods in 1-D is unity, no matter what the order of accuracy 
is. The center cell’s derivative comes at no cost in terms of parallel data transfer, which makes HWENO methods relatively 
more parallel efficient than WENO methods. Thus, ADER with HWENO seems like a natural choice in balancing the many 
constraints of efficient numerical integration of conservation law systems.

However, HWENO methods have suffered some difficulties in previous derivations. In [4], one must compute two separate 
HWENO interpolants in order to evolve the scheme, which is prohibitively expensive to be efficient in practice. The HWENO 
methods of this study require only one HWENO interpolant to be formed, and it updates both the cell-averaged value 
and cell-averaged derivative of the state. In [3], there is the problem that the method degrades to the first-order-accurate 
Godunov method, spatially, when discontinuities become sufficiently steep. This is not so much of a problem for reinforced 
discontinuities such as shocks, but for contact discontinuities and linear transport discontinuities, this will excessively diffuse 
discontinuities. The HWENO methods of this study perform more accurately than a first-order-accurate Godunov at contact 
discontinuities, mimicking the behavior of more traditional WENO schemes. Finally, the HWENO methods herein are more 
similar to [3] than to [2] in the sense that they directly form full polynomials rather than point values. This provides 
remarkable flexibility in terms of deriving a new method, and that flexibility is demonstrated in the new methods.

First, the MMFV method and the ADER-DT time discretization will be described in detail in Section 2. Then, the design 
philosophy of the new HWENO methods is detailed in Section 3, and four HWENO methods are derived at sixth-, eighth-,
and tenth-order accuracies with varying specification of low-ordered polynomials. In Section 4, numerical experiments are 
performed to validate and assess the new HWENO methods against a baseline WENO method that is common from litera-
ture. Finally, conclusions are drawn in Section 5.

2. Multi-moment finite-volume, ADER-DT framework

2.1. Multi-moment finite-volume evolution

For the purposes of investigating new Hermite WENO reconstructions for multi-moment finite-volume methods using 
the ADER time discretization, this study is concerned with a generic 1-D system of conservation laws of the form:
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where R is a flux function intended to reconcile different time-averaged fluxes sampled at the same cell interface. Note 
that the flux function is performed on time-averaged states and fluxes, and therefore, it should be a linear function rather 
than a non-linear function.

For the second evolution equations, intended to evolve the cell-averaged first-derivative, (1) is first differentiated in space 
and then integrated over Ωi × [tn, tn+1]. This gives rise to:
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