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A hydrodynamic/acoustic splitting approach is proposed to study noise emitted from 
reactive variable-density flows. A simulation using the variable-density low-Mach number 
equations provides a solution of the hydrodynamic motions of the flow (base-flow), and 
a set of equations for perturbed variables is additionally solved to capture the acoustic 
motions. A rigorous derivation of these equations for the assumed base-flow is given, which 
compared to its non-reacting counterpart includes additional terms related to variable-
density flows. Two different test cases are presented. First, the Kirchhoff vortex is simulated 
to highlight instability issues related to constant-density flows. Second, an academic test 
case for variable-density flows is proposed in the form of a reacting dipole, which is used 
to underline the stability of the proposed perturbed equations in such a scenario. Various 
intermediate forms of the derived perturbation equations are juxtaposed and analyzed with 
respect to their stability for these two test cases, and assumptions made in their derivation 
are numerically justified.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The idea of simulating noise by means of a splitting of the hydrodynamic and acoustic effects into two separate simula-
tions was originally devised by Hardin and Pope [8] and shortly afterwards used in calculations of flow over a cavity [9] as 
well as co-rotating vortices [12]. A few years later, Shen and Sørensen [26] pointed out some inconsistencies in the original 
formulation, suggested a slight modification, and demonstrated applicability to laminar flow over a circular cylinder [25] as 
well as turbulent flow over an airfoil [27]. At the same time, Slimon et al. [29] invented the approach of a rigorous Mach 
number expansion to retain only relevant terms in the perturbed equations, and Slimon et al. [30] validated their approach 
with simulations of flow past a cylinder and noise emitted from a mixing layer.

Subsequently, Goldstein [7] generalized this splitting theory in a framework known as Goldstein’s acoustic analogy, in 
which he outlines how an arbitrary, non-radiating flow field can be assumed as the base-flow solution. The latter could, 
for example, consist of the time-averaged solution of the fully compressible Navier–Stokes equations or the non-radiating 
but unsteady solution of the incompressible Navier–Stokes equations. In a rigorous derivation, he demonstrated how a 
subtraction of this assumed base-flow from the fully compressible unsteady Navier–Stokes equations leads to transport 
equations for a new set of perturbed variables that are driven by a new set of generalized stress tensors.
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Seo and Moon [23] investigated the sources of the numerical instabilities of the above methods, leading to the develop-
ment of the so-called perturbed compressible equations (PCE). A careful analysis of the role that under-resolved perturbed 
vorticity plays in these stability considerations provided Seo and Moon [24] with the basis to develop the so-called lin-
earized perturbed compressible equations (LPCE).

A slightly different approach with the same target of removing perturbed vorticity from the transport equations for 
perturbed variables was outlined by Ewert and Schröder [5]. Their work relied on a priori filtering techniques to remove 
this unwanted quantity, resulting in their so-called acoustic perturbation equations (APE). In contrast to the unsteady but 
incompressible base-flow assumption by Seo and Moon [23,24], their base-flow was assumed to be the time-average of a 
fully compressible simulation.

Bui et al. [3] later suggested an extension of the APE to reacting flows, namely APE-RF, in combination with large eddy 
simulations (LES) to analyze the noise emission from a non-premixed flame. A few years later, Bui et al. [2] validated the 
APE-RF on the DLR-A flame [1,17,28] and analyzed more carefully different noise source contributions to the overall sound 
pressure level. Again, the time-average of the LES was taken as the base-flow, which essentially introduces the material 
derivative of the base-flow density as the primary source term.

The goal of the present work is to extend the idea of Seo and Moon [24] to variable-density flows, resulting in the reac-
tive linearized perturbed momentum equations in gradient form (RLPM-G) as a generalized form of the LPCE. This approach 
allows the direct use of the unsteady variable-density low-Mach number equations as the non-radiating base-flow, thereby 
retaining the material derivative of the hydrodynamic pressure as the primary source term, as suggested by Goldstein [7].

In the various forms of the APE equations, as discussed in Bui et al. [2], several versions with varying associated source 
terms are proposed, depending on whether the base-flow is constant- or variable-density. The primary advantage of the 
present approach is therefore as follows. The proposed equations are a generalized and systematically derived set of equa-
tions for perturbed variables which do not raise the need of source term modeling, independent of whether the flow under 
consideration is constant or variable-density.

In Section 2, the governing equations for the fully compressible and the base-flow simulations are presented, followed 
by a rigorous derivation of the resulting perturbed equations in Section 3. Simplifying assumptions as well as a detailed 
analysis of instability effects are analyzed in Section 4 for various forms of the perturbed equations. After a brief summary 
of the numerical implementation in Section 5, the Kirchhoff vortex test case is presented in Section 6, followed by the 
proposed reacting dipole test case in Section 7. Lastly, in Section 8, conclusions will be drawn.

2. Fully compressible and base-flow equations

2.1. Fully compressible Navier–Stokes equations

The instantaneous equations governing conservation of mass, momentum, and sensible energy are written in tensor 
notation, with repeated indices denoting summation, as:

∂tρ + ∂ j(ρu j) = 0 (1a)

∂t(ρui) + ∂ j(ρuiu j) = −∂i p + ∂ jτ ji (1b)

∂t(ρes) + ∂ j(ρesu j) = −p∂ ju j − ∂ jq j + Φ + ω̇T , (1c)

where t denotes time and i the i-direction of the spatial xi -coordinate, ρ denotes density, ui is the fluid velocity in the 
spatial i-direction, p denotes pressure, τi j is the viscous stress tensor, es is the sensible energy, qi the heat flux vector, 
Φ = τi j∂ jui abbreviates the dissipation function, and ω̇T stands for the chemical heat release. Sensible energy and sensible 
enthalpy are defined as the following integral expressions:

es =
T∫

Tref

cv dT , hs =
T∫

Tref

cpdT , (2)

where cp and cv are the coefficients of specific heat at constant pressure and volume, respectively, and temperature is 
denoted by T . Sensible energy and enthalpy are related via pressure and density:

es = hs − p

ρ
. (3)

The dependent variables also have to satisfy an equation of state; here the ideal gas law is assumed:

p = ρRT (4a)

R = cp − cv , (4b)

where R is the specific gas constant.
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