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A multiple-relaxation-time (MRT) lattice Boltzmann (LB) scheme developed for axisym-
metric flows recovers the complete continuity and Navier–Stokes equations. This scheme 
follows the strategy of the standard D2Q9 model by using a single particle distribution 
function and a simple “collision-streaming” updating rule. The extra terms related to 
axisymmetry in the macroscopic equations are recovered by adding source terms into the 
LB equation, which are simple and involve no gradients. The compressible effect retained 
in the Navier–Stokes equations is recovered by introducing a term related to the reversed 
transformation matrix for MRT collision operator, so as to produce a correct bulk viscosity, 
making it suitable for compressible flows with high frequency and low Mach number. 
The validity of the scheme is demonstrated by testing the Hagen–Poiseuille flow and 3D 
Womersley flow, as well as the standing acoustic waves in a closed cylindrical chamber. 
The numerical experiments show desirable stability at low viscosities, enabling to simulate 
a standing ultrasound field in centimeters space.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the last two decades, the lattice Boltzmann (LB) method has developed rapidly into a powerful tool for numerical 
study of complex fluid flows [1–3]. As an alternative to solve the partial differential equations, the LB method is charac-
terized by the local formulation of the particle interactions, simple updating rule on grids, intrinsic adaptability to parallel 
computing, and easy implementation of the boundary conditions and interfacial phenomena. Though originally devised for 
the Navier–Stokes equations [4–6], it has also been extended to broader physical areas beyond the fluid dynamics. These 
include the acoustics [7,8], electrodynamics [9,10], quantum mechanics [11,12], diffusion [13,14], phase separation [15,16], 
phase transition [17,18], and so on.

Axisymmetric flow problems frequently appear in scientific research and practical applications. Making use of the ax-
isymmetry, the computational efficiency can be significantly enhanced by reducing the dimensions of the coordinate system. 
In recent years, many efforts have been paid to develop the axisymmetric LB models on the two-dimensional (2D) square 
lattice. Halliday et al. [19] firstly proposed a model by adding “source” or “force” terms into the standard 2D Cartesian 
lattice Boltzmann equation, so as to recover the cylindrical polar coordinate form of the continuity and Navier–Stokes 
equations. Following this idea, several modified axisymmetric LB models were offered [20–22], and developed even for 
thermal flows [23] and multiphase flows [24–26]. Recently, Li et al. [27] and Zhou [28] proposed improved axisymmetric 
LB models that contain fewer source terms and are free of velocity gradients, so that the algorithm of the collision step 
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is effectively simplified. Axisymmetric LB methods other than Halliday’s methodology has also been developed based on 
the vorticity-stream-function equations [29,30] or derived from the continuous Boltzmann equation in cylindrical coordi-
nates [31]. Nevertheless, the advantages of Halliday’s methodology are obvious since it inherits the general benefits of the 
standard LB method and is easy to treat the boundary conditions.

The traditional lattice Boltzmann equation usually uses the Bhathagar–Gross–Krook (BGK) collision operator. As an ex-
tension to the single relaxation time used in the BGK model, the multiple-relaxation-time (MRT) collision scheme was 
developed [32–35], which separates various hydrodynamic modes and allows them to relax at different time scales. The 
MRT-LB method includes more physics and shows better numerical stability, especially at low fluid viscosities. In the mod-
eling of the axisymmetric lattice Boltzmann equations, the MRT collision algorithm was also taken into consideration [25,27,
36,37]. However, these existing axisymmetric MRT models were devised only for incompressible flows, and the additional 
relaxation parameters were employed mainly to promote the computing stability rather than modeling the realistic phys-
ical properties of the fluids. For example, the bulk viscosity was usually over-evaluated by setting a small relaxation rate 
for the energy mode. In this paper, an axisymmetric MRT LB model is proposed in the frame of the 2D standard lattice, 
which aims to recover the complete continuity and Navier–Stokes equations at the limit of low Mach number. This model 
offers proper compressible effect and reasonable bulk viscosity, and can be applied to simulate fluid flows with considerable 
compressibility and finite velocity amplitude, such as high frequency acoustic waves in cylindrical symmetry. It also inherits 
the benefits of the standard LB scheme by using a single distribution function and a simple up-dating rule and is free from 
gradient terms.

The rest of the paper is organized as follows. In Section 2, the axisymmetric continuity and Navier–Stokes equations are 
described. In Section 3, the axisymmetric MRT LB model is presented, and then subjected to the Chapman–Enskog analysis 
and explicitation. The method is numerically validated In Section 4 and finally concluded in Section 5.

2. Axisymmetric flow equations with compressibility

The complete continuity and Navier–Stokes equations for the axisymmetric flows in cylindrical coordinates can be written 
as follows [38]:
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where ρ is the density, p is the pressure, t is the time, i, j and k are the indexes standing for r or z, i.e., the coordinates 
in radial and axial directions, ui is the component of macroscopic velocity in i direction, η and η′ are the shear viscosity 
and the second viscosity, respectively, δi j is the Kronecker delta function, and the repeated indexes indicate the Einstein 
summation convention, which means a summation over the space coordinates.

The last term in Eq. (2) vanishes if the fluid is assumed to be incompressible. In order to include the compressible effect 
and reformulate the lattice Boltzmann equation in a reasonable way, this term is retained here and will be used in Section 3.

3. Axisymmetric MRT lattice Boltzmann model

3.1. Lattice Boltzmann equation

The present multiple-relaxation-time lattice Boltzmann equation is based on the standard two-dimensional nine-velocity 
(D2Q9) lattice [5] by employing a substitution of the coordinates, (x, y) → (r, z). The discrete microscopic velocity eα =
(eαr, eαz) of a particle in the α link is written as:
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and the corresponding local equilibrium distribution function f eq
α is defined as
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where e is the unit velocity, and wα is the weight factor given by
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