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In this paper, we propose a class of high-order schemes for solving one- and two-
dimensional hyperbolic conservation laws. The methods are formulated in a central finite 
volume framework on staggered meshes, and they involve Hermite WENO (HWENO) 
reconstructions in space, and Lax–Wendroff type discretizations or the natural continuous 
extension of Runge–Kutta methods in time. Compared with central WENO methods, 
the spatial reconstruction used here is much more compact; and unlike the original 
HWENO methods, our proposed schemes require neither flux splitting nor the use of 
numerical fluxes. In the system case, local characteristic decomposition is applied in the 
reconstructions of cell averages to enhance the non-oscillatory property of the methods. 
The high resolution and robustness of the methods in capturing smooth and non-smooth 
solutions are demonstrated through a collection of one- and two-dimensional scalar and 
system of examples.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Hyperbolic conservation laws arise in a wide range of applications in science and engineering, such as aerodynamics, 
meteorology and weather prediction, astrophysical modeling, multi-phase flow problems, and the study of explosion and 
blast waves. In general the exact solutions of such equations are not available, and they can also develop discontinuous 
features, e.g. shocks, compound waves, etc., regardless of the smoothness of the initial and boundary data. It has been an 
active and important research area to design accurate and robust methods for numerically simulating hyperbolic conserva-
tion laws.

In this paper, we design high-order central Hermite WENO (weighted essentially non-oscillatory, C-HWENO) schemes for 
solving one- and two-dimensional hyperbolic conservation laws{

ut + ∇ · f (u) = 0,

u(x,0) = u0(x),
(1.1)
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with suitable initial and boundary conditions. Here (1.1) can be scalar or a system, and it is often nonlinear. Our methods 
use Hermite WENO (HWENO) reconstructions as spatial discretizations, and Lax–Wendroff type discretizations or the natural 
continuous extension of Runge–Kutta methods as time discretizations, in a central finite volume formulation on staggered 
meshes. Compared with central WENO (C-WENO) schemes, one major advantage of C-HWENO schemes is the compactness 
in the spatial reconstruction. Compared with the original HWENO schemes, the proposed methods require neither flux 
splitting nor the use of numerical fluxes that are often exact or approximate Riemann solvers. When (1.1) is a system, local 
characteristic decomposition is applied in the reconstruction of cell averages to enhance non-oscillatory property of the 
schemes.

WENO schemes are high-order finite volume or finite difference methods widely used for hyperbolic conservation laws, 
with attractive property of maintaining both uniform high-order accuracy and an essentially non-oscillatory shock transition. 
They were designed based on the successful ENO (essentially non-oscillatory) schemes [7,29,30], and improve in robustness, 
smoothness of fluxes, better steady state convergence, accuracy in smooth region of the solutions, and efficiency. The first 
WENO scheme was constructed in [18] as a third-order finite volume method in one space dimension. In [9], third and 
fifth-order finite difference WENO schemes in multiple dimensions were constructed, with a general framework to design 
smoothness indicators and nonlinear weights. Finite difference WENO schemes of higher order accuracy (i.e. seventh- to 
eleventh-order) were proposed in [2], while the finite volume versions on structured and unstructured meshes were inves-
tigated in, e.g. [5,8,14,27,23]. In [27], a simple and effective technique for handling negative linear weights without a need 
to get rid of them was proposed, and this technique is also adopted in this paper. We refer to [28] for a detailed review of 
WENO schemes. It is known that higher order accuracy in a finite difference or finite volume framework relies on enlarging 
the stencil for reconstructions. To improve the compactness while keeping the accurate and non-oscillatory properties of the 
methods, a fifth-order finite volume HWENO scheme was proposed in [24] for one dimension, with a fourth-order one in 
[26,34] for two dimensions. The compactness of HWENO methods is achieved by evolving not only the solution but also its 
first spatial derivative(s), and they are both used in the high-order spatial reconstructions. Some other related earlier work 
includes [31,4,21].

Our proposed methods are also related to central schemes, which can be regarded as extensions of the classical Lax–
Friedrichs method [6]. A second-order central scheme was first developed in [22] by Nessyahu and Tadmor, and it requires 
neither numerical fluxes, that are exact or approximate Riemann solvers, nor flux splitting. For the system case, numerical 
tests show that local characteristic decomposition is also not needed. Motivated by the simplicity and robustness of the 
second-order central scheme, various high-order or semi-discrete versions as well as extensions to multiple dimensions 
were explored in [19,3,1,10–12,14,15,23]. In a series of recent papers, the ENO and WENO reconstruction techniques have 
been successfully integrated into the central framework. A one-dimensional central ENO (C-ENO) scheme was introduced 
in [3]. The third- and fourth-order C-WENO schemes were developed in [14–17] for one- and two-dimensional conservation 
laws. In [23], fifth- and ninth-order C-WENO schemes were constructed based on finite volume formulation on staggered 
meshes, and they used the natural continuous extension of Runge–Kutta methods in time. Numerical experiments in [23]
also demonstrate that the local characteristic decomposition is still necessary to control spurious oscillations when the 
order of accuracy is high, for both the central WENO schemes on staggered meshes and the upwind WENO schemes on 
non-staggered meshes.

When upwind type WENO schemes are used as spatial discretizations for solving hyperbolic conservation laws, they 
are often combined with explicit nonlinearly stable TVD Runge–Kutta time discretizations [29] following method of lines 
approaches. The schemes developed in the present work, on the other hand, are defined on staggered meshes, and they 
are more of fully discrete schemes themselves. For such methods, one can no longer directly apply the explicit nonlin-
early stable TVD Runge–Kutta methods to achieve high-order accuracy in time. Instead, we choose to use two other time 
discretizations: the Lax–Wendroff type discretizations, and the natural continuous extension of Runge–Kutta methods. The 
one-step one-stage Lax–Wendroff type time discretization, which is also called the Taylor type, is based on the idea of the 
classical Lax–Wendroff scheme [13]. It relies on converting the time derivatives in a temporal Taylor expansion of the solu-
tion into spatial derivatives by repeatedly using the governing equations and their differentiated forms. The original finite 
volume ENO schemes in [7] used this approach for the time discretization. In [25], a Lax–Wendroff time discretization pro-
cedure was developed for high-order finite difference WENO schemes. In contrast to upwind schemes, many fully discrete 
high-order central schemes [3,14–17,23] use Runge–Kutta methods with the aid of the natural continuous extension [33]
as time discretizations. The natural continuous extension of Runge–Kutta technique is based on standard Runge–Kutta time 
discretizations, and it provides approximations of comparable accuracy for the solutions at intermediate time over each time 
step. It works well with spatial discretizations defined on staggered meshes yet does not require much additional cost than 
standard Runge–Kutta methods.

The organization of this paper is as follows. In Section 2, we describe in detail the construction and implementation of 
C-HWENO schemes with Lax–Wendroff type time discretizations for one- and two-dimensional scalar and system equation 
(1.1). In Section 3, we present the construction and implementation of C-HWENO schemes with the natural continuous 
extension of Runge–Kutta methods as time discretizations, and the HWENO reconstructions here are similar to those in 
Section 2. In Section 4, extensive numerical examples are provided to demonstrate the performance of the proposed schemes 
for smooth and non-smooth examples in one and two dimensions. Concluding remarks are made in Section 5.
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