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In this paper, we generalize the maximum-principle-preserving (MPP) flux limiting 
technique developed by Xu (2013) [20] to a class of high order finite volume weighted 
essentially non-oscillatory (WENO) schemes for scalar conservation laws and the compress-
ible Euler system on unstructured meshes in one and two dimensions. The key idea of this 
parameterized limiting technique is to limit the high order numerical flux with a first order 
flux which preserves the MPP or positivity-preserving (PP) property. The main purpose of 
this paper is to investigate the flux limiting approach with high order finite volume method 
on unstructured meshes which are often needed for solving some important problems on 
irregular domains. Truncation error analysis based on one-dimensional nonuniform meshes 
is presented to justify that the proposed MPP schemes can maintain third order accuracy 
in space and time. We also demonstrate through smooth test problems that the proposed 
third order MPP/PP WENO schemes coupled with a third order Runge–Kutta (RK) method 
attain the desired order of accuracy. Several test problems containing strong shocks and 
complex domain geometries are also presented to assess the performance of the schemes.

© 2014 Published by Elsevier Inc.

1. Introduction

In this paper, we are interested in the scalar conservation law:

ut + ∇ · F(u) = 0 (1.1)

and the compressible Euler system:

ξt + f (ξ)x + g(ξ)y = 0, (1.2)

with
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and

mu = ρu, mv = ρv, E = p

γ − 1
+ 1

2
ρ
(
u2 + v2)

where ρ is the density, (u, v)T is the velocity, mu and mv are the momentums, p is the pressure, E is the total energy and 
γ is the specific heat ratio.

Many numerical methods have been developed for solving (1.1) and (1.2) over the recent decades, such as the discon-
tinuous Galerkin (DG) method [2], the finite volume/finite difference essentially non-oscillatory (ENO) schemes [6,10], and 
finite volume/finite difference WENO schemes [10,12]. Among various methods, WENO schemes are shown to be very robust 
and efficient especially when solutions may contain discontinuities, sharp gradient regions and other complicated solution 
structures. Moreover, finite volume WENO schemes have more flexibility in terms of mesh structure compared to finite 
difference WENO schemes. In particular, finite volume WENO schemes have been applied to unstructured meshes with ar-
bitrary partition for complex domain geometries [3,7,13,29], while finite difference WENO schemes can only be applied to 
a uniform or smoothly varying mapped grid. In this paper, we focus our discussion on finite volume WENO schemes.

The solution to the scalar conservation law (1.1) has MPP property such that, if the initial condition is bounded um ≤
u(x, t0) ≤ uM , then um ≤ u(x, t) ≤ uM for all the future times t > t0. Similarly, the solutions to the compressible Euler system 
have a PP property such that both densities and pressures must maintain positive in every situation. However, the existing 
high order schemes for solving (1.1) and (1.2) do not necessarily retain the MPP/PP property in the numerical solutions. In 
particular, if the solution to (1.2) contains low density or pressure, high order schemes might produce negative density or 
pressure, leading to an ill-posed problem that typically causes failure of the numerical algorithm. The situation was restively 
stagnant until the recent work by Zhang and Shu [23,24]. In this work, arbitrary high order finite volume WENO schemes 
and DG methods are developed to preserve MPP and PP properties, by limiting the reconstructed polynomials around cell 
averages. Following a similar idea, Zhang and Shu extended their schemes to two-dimensional unstructured meshes [25,27]. 
They further demonstrated that the schemes were able to the maintain designed order of accuracy under a CFL constraint. 
Afterwards, Hu et al. [9] also developed a flux cut-off limiter applied to finite difference WENO schemes which maintains 
the PP property for compressible Euler system. More recently, a parametrized MPP flux limiter is developed to maintain the 
MPP property for scalar hyperbolic conservation laws [11,20]. The main advantage of this new parametrized limiter is that 
the designed order of accuracy of the base WENO/DG schemes are maintained without excessively restricting the CFL. Later 
in [19], Xiong et al. improved the CFL constraint and reduced computational cost by applying the parametrized MPP flux 
limiter to the final RK stage only. It was also proven in [19] that the parametrized MPP flux limiter can maintain up to third 
order accuracy in space and time for one-dimensional nonlinear scalar conservation laws on uniform meshes. This limiter 
is also extended to high order PP finite difference WENO schemes for the compressible Euler system in [18] and high order 
MPP finite volume WENO methods for scalar convection-dominated problems on uniform meshes [21].

In this paper, we will generalize the parametrized flux limiter to finite volume WENO schemes on unstructured meshes, 
and perform numerical experiments for both scalar equations and the Euler system of compressible gas dynamics. To ac-
company the numerical results, error analysis on one-dimensional nonuniform meshes is provided. There are two main 
types of WENO reconstruction in the literature. In the first type of reconstruction, the order of WENO schemes is not higher 
than the degree of the reconstructed polynomials on each small stencil. i.e., the nonlinear WENO weights are only designed 
for the purpose of stability, see [3–5,15,16] for details. The second type consists of WENO schemes whose order of accuracy 
is higher than the degree of the reconstructed polynomials on each small stencil, see, for example, [7,28,29]. Compared 
with the first type of WENO schemes, the second type of WENO schemes are more difficult to construct but have a more 
compact stencil of the same accuracy. Based on those two different approaches, a hybrid approach was also proposed in [13]
to deal with distorted local mesh geometries. In the implementation of this work, we will use the second type of WENO 
reconstruction and the hybrid approach. We refer them as WENO-C and WENO-H respectively in the following sections.

The rest of the paper is organized as follows. In Section 2, we will briefly review finite volume schemes for scalar 
hyperbolic conservation laws and the parametrized MPP flux limiter. In Section 3, we will provide error analysis on one-
dimensional nonuniform meshes to show that the MPP schemes can preserve high order accuracy without any sacrifice on 
CFL constraints. In Section 4, we will present high order MPP and PP finite volume WENO schemes on two-dimensional 
unstructured meshes for scalar conservation laws and compressible Euler system. Numerical examples of the third order 
finite volume WENO schemes for smooth problems and some problems containing strong shocks and complex geometries 
will be shown in Section 5. The conclusion is given in Section 6.

2. One-dimensional finite volume MPP flux limiter for scalar equations

In this section, we first present the general framework of an MPP limiter applied to a finite volume scheme on a nonuni-
form mesh.

We consider a one-dimensional scalar conservation law:{
ut + f (u)x = 0, x ∈ [0,1];
u(x,0) = u0(x),

(2.1)
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