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We study a method, Extra Chance Generalized Hybrid Monte Carlo, to avoid rejections 
in the Hybrid Monte Carlo method and related algorithms. In the spirit of delayed 
rejection, whenever a rejection would occur, extra work is done to find a fresh proposal 
that, hopefully, may be accepted. We present experiments that clearly indicate that the 
additional work per sample carried out in the extra chance approach clearly pays in terms 
of the quality of the samples generated.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study a technique, Extra Chance Generalized Hybrid Monte Carlo (XCGHMC), to avoid rejections in the 
Hybrid Monte Carlo (HMC) method [8] and its variants (e.g. [3,9,15–17]). In the spirit of what in the statistics literature 
is called delayed rejection [12,20,32], whenever a rejection would occur, additional work is done to find a fresh proposal 
that, hopefully, may be accepted. Rejections, while essential to ensure that the algorithms sample from the right target 
probability distribution, contribute to an increase of the correlation of the samples [22,31]. Furthermore, for algorithms with 
partial momentum refreshments [15,17], each rejection necessarily requires a flip of the momentum and interferes with the 
underlying Hamiltonian dynamics. We present experiments that clearly indicate that the additional work per sample carried 
out in the extra chance approach in order to avoid rejections clearly pays in terms of the quality of the samples generated.

The algorithm studied here is mathematically equivalent to that suggested by Sohl-Dickstein, Mudigonda and DeWeese 
in [30]. However the actual formulas for the acceptance probability in the present work are different from those in [30]. 
We believe that the formulas used here provide insight into the probabilities involved. Furthermore we prove that the 
extra chance algorithm actually satisfies detailed balance/stochastic reversibility; this is surprising, as [30] suggests that the 
avoidance of rejections comes at the price of the violation of detailed balance. Detailed balance is of course a valuable 
property in the performance and analysis of Markov Chain Monte Carlo algorithms [24]. For instance the estimation of the 
effective sample size or autocorrelation time used in our experiments (taken from [10]) relies on the chain being reversible 
with respect to the target distribution.

✩ A MATLAB implementation of the algorithm and other utilitarian scripts can be found at http :/ /github .com /vitaminace33 /xhmc.
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00 given z = (x, y) ∈R
d ×R

d

01 y ← y − (�t/2)∇V (x)
02 for � = 1 to L − 1
03 x ← x + �tM−1 y
04 y ← y − �t∇V (x)
05 end for
06 x ← x + �tM−1 y
07 y ← y − (�t/2)∇V (x)
08 (x′, y′) = (x, y)

Fig. 1. Velocity Verlet integrator for advancing L ≥ 1 time-steps of length �t > 0 starting from the initial point z and producing the final point z′ = I(z).

In turn the basic idea in [30] is not essentially different from delayed rejection [12,20,32]. However some peculiarities of 
HMC (momentum flip, modified detailed balance vs. standard detailed balance, proposals being obtained via a deterministic 
flow) make it difficult, or even impossible, to apply the material of [12,20,32] to devise or analyze algorithms similar to 
those considered in [30] or here.

The literature is not lacking in suggestions to avoid rejection/momentum flips in HMC, see e.g. [1–3,29,33]. Comparisons 
between those techniques and the extra chance approach are not within our scope here. Neither shall we be concerned 
with comparing HMC with alternative sampling algorithms as done in [7].

In Section 2 we present the extra chance algorithm. Section 3 is devoted to an analysis of the acceptance probabilities. 
Proof of concept numerical experiments is reported in Section 4 and Section 5 concludes. Some more mathematical results 
are given in Appendices A–C.

2. Algorithm

The aim is to obtain samples xn from a target probability distribution in the state space R
d with density

1

Z
exp

(−βV (x)
)
, Z =

∫
Rd

exp
(−βV (x)

)
dx. (1)

The algorithms considered here do not require that Z be known; they merely need to evaluate V and its gradient ∇V . 
They generate a Markov chain x0 → x1 → ·· · → xN [24] that has (1) as an invariant distribution, in such a way that under 
suitable ergodic behavior, it is possible to estimate averages 〈A〉 with respect to the target by taking means of the values of 
A along a realization of the chain:

〈A〉 = 1

Z

∫
Rd

A(x)exp
(−βV (x)

)
dx ≈ 1

N + 1

N∑
n=0

A(xn). (2)

The format in (1) implies that the density is everywhere positive. As shown in e.g. [9], it is not difficult to extend the 
algorithms and analysis to cases where the density vanishes in a subset of the state space.

Regardless of the details of the application in mind, HMC and its variants use the Hamiltonian formalism of classical 
mechanics. The components of x are interpreted as generalized co-ordinates describing the configuration of a mechani-
cal system and an auxiliary d-dimensional vector y is introduced whose components represent the associated conjugated 
momenta. We shall use the notations z = (x, y), z′ = (x′, y′), etc. to refer to points in the phase space R

d × R
d . If M is a 

user-specified, symmetric positive-definite d ×d mass matrix, the algorithms use the Hamiltonian function (total mechanical 
energy)

H(z) = 1

2
yT M−1 y + V (x), (3)

and the probability distribution in the phase space defined by the unnormalized density

ρ(z) = exp
(−βH(z)

) = exp
(−(β/2)yT M−1 y

) × exp
(−βV (x)

)
. (4)

The product structure of ρ implies that x and y are stochastically independent; x is distributed according to the target (1)
and y ∼N (0, M), i.e. y is Gaussian with zero mean and covariance matrix M .

The dynamics associated with (3) is given by

d

dt
x = M−1 y,

d

dt
y = −∇V (x), (5)

a system of differential equations whose solution flow exactly preserves the distribution (4), see e.g. [26]. In practice this 
flow cannot be computed in closed form and one has to resort to numerical approximations; the Störmer–Verlet/leapfrog 
integrator [13,18,27,28] is the method of choice. Fig. 1 shows pseudocode for computing the result z′ = (x′, y′) = I(z) of L
integration time-steps of length �t > 0 starting from the initial point z. The transformation I, which maps the phase space 
into itself, is both volume preserving (i.e. has unit Jacobian determinant) and reversible. Reversibility means that, for each z′ , 
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