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In this paper, the second-order space–time conservation element and solution element 
(CE/SE) method proposed by Chang (1995) [3] is implemented on hybrid meshes for 
solving conservation laws. In addition, the present scheme has been extended to high-
order versions including third and fourth order. Most methodologies of proposed schemes 
are consistent with that of the original CE/SE method, including: (i) a unified treatment 
of space and time (thereby ensuring good conservation in both space and time); (ii) a 
highly compact node stencil (the solution node is calculated using only the neighboring 
mesh nodes) regardless of the order of accuracy at the cost of storing all derivatives. 
A staggered time marching strategy is adopted and the solutions are updated alternatively 
between cell centers and vertexes. To construct explicit high-order schemes, second-
and third-order derivatives are calculated by a modified finite-difference/weighted-average 
procedure which is different from that used to calculate the first-order derivatives. The 
present schemes can be implemented on a wide variety of meshes, including triangular, 
quadrilateral and hybrid (consisting of both triangular and quadrilateral elements). Beyond 
that, it can be easily extended to arbitrary-order schemes and arbitrary shape of polygonal 
elements by using the present methodologies. A series of common benchmark examples 
are used to confirm the accuracy and robustness of the proposed schemes.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In performing the direct numerical simulation (DNS) and large eddy simulation (LES) of turbulent flows and computa-
tional aeroacoustics (CAA), treating complex configurations in an accurate and efficient manner is essential. Under normal 
circumstances, structured quadrilateral meshes have better computational accuracy than unstructured triangular meshes. 
However, multi-block meshes are required to treat complex configurations. Although triangular meshing schemes have a 
good ability to model complex configurations, they have difficulties in generating a viscous mesh. Thus, in solving actual 
engineering and scientific problems, hybrid meshes combining triangular and quadrilateral meshes are generally required. 
On the choice between high-order schemes and typical second-order schemes, previous research has shown that the former 
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usually have significant potentials to achieve higher efficiency in terms of number of grids required to accurately resolve 
some important flow features than the latter [1]. As a result, the problem of developing high-order numerical methods 
implemented on hybrid meshes has attracted increasing interest in the computational fluid dynamics field in recent years.

When constructing a finite volume/difference method on a quadrilateral or a triangular mesh, one is given the option of 
choosing the upwind scheme or the centered scheme, each with its own advantages and drawbacks [2]. The second-order 
space–time Conservation Element and Solution Element (CE/SE) method, developed by Chang and coworkers [3–13], is a 
centered scheme based on a non-dissipative core. Compared with the N–T scheme (Nessyahu and Tadmor, 1990) [14], the 
mesh, the balancing of fluxes, and the updates of the cell average quantities are essentially identical. The difference is in 
the estimation of the slopes (of the linear interpolants, see [2]). In the “a–ε” CE/SE scheme, the parameter ε is involved 
in the calculation of slopes and is used to control the numerical dissipation. When ε = 0, the scheme is reversible in 
time and dissipation-free but cannot be directly used to capture shock phenomena. When ε = 1/2 (employed here and in 
most practical calculations of CE/SE), the CE/SE scheme is not reversible anymore, and it has the (not-necessarily-desirable) 
property that when time step is of size zero, the solution changes with time due to staggering (after two half time steps) 
and does not remain the same as the initial data.

The original CE/SE schemes were constructed on triangular elements in 2D [4] and tetrahedrons in 3D [13]. However, 
later two different extensions of the CE/SE scheme were based on quadrilateral elements in 2D [11,15] and hexahedral 
elements in 3D [11,16]. Generally speaking, the above CE/SE schemes can be categorized as non-staggered and staggered 
versions. Methodologies used in the two versions are essentially the same, except the time marching strategy. In the non-
staggered version [11], the solution elements (SEs) and conservation elements (CEs) are twice as big as the underlying cells, 
and the collection of all SEs (or CEs) will cover the computational domain twice over; the solution is updated at all cell cen-
ters (and does not zigzag). However, the staggered version updates the solution alternatively between any two of the three 
sets of data: at cell vertexes, at cell centers, and at midpoints of edges. In present study, a staggered version is extended to 
hybrid meshes. At time n, the solution is stored at the cell vertexes, i.e., centers of the staggered cells; at time n + 1/2, the 
solution is updated and stored at original cell centers; at time n + 1, the solution is back at the original cell vertexes.

Although the original CE/SE scheme is only a second-order scheme, its resolution of strong discontinuities is comparable 
with that of high-order methods such as the fourth-order Essential Non-Oscillatory scheme [5]. It has already been widely 
applied in simulations of sound wave propagation [9], aero-acoustics [5,17], steady viscous flows [18], supersonic capsule 
flows [19], hypersonic viscous flows [20], elastic wave propagation in solids [21], ultra-relativistic Euler equation problems 
[22], magneto-hydrodynamic flows [10,23–27], chemical reactive flows [12,16,28–30], multi-material elastic–plastic flows 
[15], spall fracture phenomena [31] and many electrical engineering problems [32]. However, in the following paper, we 
will see that the computational accuracy of the CE/SE scheme is not as satisfactory as high order schemes, when applied 
to certain complex fine fluid structures. As a result, the problem of developing higher-order CE/SE schemes has attracted 
increasing attention in the literature. Chang developed fourth-order [7] and higher-order [8] CE/SE schemes by using the 
space–time inversion (STI) invariant property of the original CE/SE scheme and defining new CEs and SEs with which to 
derive the equations required to calculate the high-order spatial derivatives. Liu et al. [33] developed an arbitrary-order 
CE/SE scheme based on arbitrary Taylor expansions in the solution elements. In the proposed scheme, the mesh variables 
were calculated by integrating the conservation law in all of the CEs and calculating the derivatives using a central difference 
scheme. Chang [34] proposed a novel approach for constructing a highly-stable high-order CE/SE scheme in which the 
even-order derivatives were calculated by integrating the conservation law in the CEs and the odd-order derivatives were 
treated using a central difference scheme. In a later study, Bilyeu [35] extended the proposed approach to a system of linear 
and non-linear hyperbolic partial differential equations.

The present study commences by a short summary of the 1D CE/SE scheme (with ε = 1/2) for a non-uniform mesh as a 
guide (Section 2.2). Then the staggered time marching strategy and the definition of CE and SE for hybrid meshes are illus-
trated (Section 2.3). Then a second-order space–time conservative scheme is constructed on a hybrid mesh. The time march-
ing scheme for mesh variables is derived by imposing the conservation law on the defined CE with the aid of first Taylor 
expansion in corresponding SEs (Section 2.4). And the spatial derivatives are evaluated using a finite-difference/weighted-
average procedure (Section 2.5). After that, the second-order scheme is extended to three- and fourth-order schemes by 
using second-order and third-order Taylor expansions in SEs. The definition of CE and SE and the time marching strategies 
of mesh variables and first-order derivatives are consistent with that of the second-order scheme. To construct an explicit 
scheme, a finite-difference/weighted-average procedure is designed to derive the high-order derivatives before calculating 
mesh variables and first-order derivatives (Section 3.2). The robustness and accuracy of the proposed schemes are demon-
strated by means of a series of standard benchmark tests (Section 4).

2. Construction of a second-order CE/SE scheme on hybrid mesh

2.1. Governing equation

Consider the following scalar conservation law:

∂u

∂t
+ ∇ · h = 0, (1)
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