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In this article, a computational procedure that automatically determines the optimum 
time step, cell weight and species weights for steady-state multi-species DSMC (direct 
simulation Monte Carlo) simulations is presented. The time step is required to satisfy the 
basic requirements of the DSMC method while the weight and relative weights fields are 
chosen so as to obtain a user-specified average number of particles in all cells of the 
domain. The procedure allows the conduct of efficient DSMC simulations with minimal 
user input and is integrable into existing DSMC codes. The adaptive method is used 
to simulate a test case consisting of two counterflowing jets at a Knudsen number of 
0.015. Large accuracy gains for sampled number densities and velocities over a standard 
simulation approach for the same number of particles are observed.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The DSMC (direct simulation Monte Carlo) method is today the most widely used simulation method for high speed 
rarefied flows [1]. Its accuracy and convergence is mainly determined by the number of particles employed in the simu-
lation, the mesh size and the time step employed. Because of the formulation of DSMC [2], the number of particles in a 
cell is directly proportional to its number density while the time step of the simulation can be no more than the mean 
collision time so that the movement and collisions of particles can be decoupled. Similarly, collisions are only performed 
for particles located in the same cell, so that its characteristic length has to be less than the mean free path for this local 
assumption to be valid. This in turn signifies that the constraints which the numerical parameters of DSMC have to satisfy 
are inherently tied to the physics, particularly the number density field, of the test case being simulated. This, however, 
makes the efficient simulation of flows containing large variations in number density or large disparities between species 
number densities difficult. Large density variations are commonly encountered in many rarefied flows, particularly jets, 
while the accurate simulation of trace species, i.e. chemical species with a low concentration relative to others, is important 
for many applications. This is in particular the case for weakly ionized flows where the electric field is determined by the 
distribution of charged particles whose concentrations are low compared to neutral particles [3,4]. Trace species also play an 
important role in chemically reacting [5] and radiating [6] flows. These drawbacks inherent to the DSMC method have led 
to a number of modifications to the basic DSMC algorithm that are in ubiquitous use today. The first is the use of spatially 
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varying weights, particularly for axisymmetric simulations, such as in (amongst many others) [7,8] where the cell volume 
scales with the distance to the centerline, that allows enough particles to be present close to the centerline while reducing 
their number further away from it. The second improvement is the use of a spatially varying time step, and an adaptive 
procedure to calculate the optimum time step field as in, e.g., [9–11]. For multi-species flow, the use of relative weights, 
also called species weights, is widespread, such as in [6,12,13]. They allow to increase the number of particles representing 
species with low number densities relative to others thereby allowing the use of fewer particles overall in the simulation. 
Spatially varying time steps, cell weights and relative weights are, however, almost never used simultaneously and whereas 
an adaptive procedure for the time step has been proposed before [9,10], one for the cell weights and species relative 
weights has not. Relative weights are furthermore most often assumed to be spatially uniform thereby forfeiting some of 
the efficiency gains obtainable by having them vary through the computational domain. The aim of this article is to detail a 
formulation of an all-encompassing adaptive procedure for the time step, cell weights and relative weights where all are al-
lowed to vary throughout space. Such a procedure greatly facilitates the conduct of efficient DSMC simulations by lessening 
the need for human inputs, such as e.g., running multiple simulations to determine optimum weight fields. The first part 
of the article describes the additional considerations that must be taken into account when using spatially varying weights 
or time steps in terms of particle movement and collisions including the potential deleterious effects of particle cloning. 
The adaptive procedure for the time step, cell weight and species relative weights is then detailed and its integration into 
existing DSMC codes discussed. A test case consisting of two counter-flowing axisymmetric jets at a Knudsen number of 
0.015 is introduced which is used to illustrate the increased accuracy obtainable with the adaptive method compared to 
when only a spatially varying time step and weight are used.

2. DSMC framework

2.1. DSMC with spatially varying time step and weights

2.1.1. Definitions
In the canonical version of DSMC, the same cell weight W p,0 and time step value �t0 are used for all Nc cells of the 

computational domain while all species are assigned the same relative weight of 1. In the following, spatially variable cell-
wise constant time step �t(�x), cell weights W p(�x) and species relative weights W rel, j(�x) are considered. A non-dimensional 
time step �̃t(�x) and cell weight W̃ p(�x) are in turn, respectively, defined as

�t(�x) = �t0�̃t(�x), (1)

W p(�x) = W p,0W̃ p(�x)�̃t(�x). (2)

The non-dimensionalized weight W̃ p(�x) is defined as such because it will later be more useful to consider the value of 
the normalized value of the weight divided by the non-dimensionalized time step, i.e. W p(�x)

W p,0�̃t(�x) instead of Ŵ p(�x) � W p(�x)
W p,0

. 
Cellwise constant weights and time step are used, while a total of Nspec distinct species are present in the simulation, so 
that each cell i (1 ≤ i ≤ Nc) is characterized by �̃ti , W̃ p,i and {W rel, j,i}Nspec

j=1 . As an example, using the previously defined 
terminology, the number density n j,i of species j inside cell i of volume V i , when it contains N j,i particles of species j, is 
given by:

n j,i = W p,0W rel, j,i W̃ p,i�̃ti N j,i

V i
. (3)

2.1.2. Particle movement
When a computational particle of species j moves from one cell i, characterized W̃ p,i, W rel, j,i , �̃ti to cell i + 1 with 

different weights W̃ p,i+1, W rel, j,i+1 and a different timestep �̃ti+1, care must be taken to preserve the flux of particles 
between the two cells. The number density flux (i.e. the number of physical particles per unit area and time) from cell i to 
cell i + 1 through their common face of area Si+1/2 from the standpoint of cell i is denoted by Φk

i→i+1|i(n j) and given as 
follows:

Φk
i→i+1|i(n j) = W rel, j,i W p,i

�ti Si+1/2
Nk

j,i→i+1|i = W p,0

�t0 Si+1/2
W rel, j,i W̃ p,i Nk

j,i→i+1|i, (4)

where Nk
j,i→i+1|i designates the number of computational particles moving from cell i to cell i + 1. Similarly, the number 

density flux of incoming particles from cell i into cell i + 1 from the standpoint of cell i + 1 is

Φi→i+1|i+1(n j) = W rel, j,i+1W p,i+1

�ti+1 Si+1/2
Nk

j,i→i+1|i+1 = W p,0

�t0 Si+1/2
W rel, j,i+1W̃ p,i+1Nk

j,i→i+1|i+1. (5)
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