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An inertia term is introduced in the AUSM+-up scheme. The resulting scheme, called 
AUSM-IT (IT for Inertia Term), is designed as an extension of the AUSM+-up scheme 
allowing for full Mach number range calculations of unsteady flows including acoustic 
features. In line with the continuous asymptotic analysis, the AUSM-IT scheme satisfies the 
conservation of the discrete linear acoustic energy at first order in the low Mach number 
limit. Its capability to properly handle low Mach number unsteady flows, that may include 
acoustic waves or discontinuities, is numerically illustrated. The approach for building the 
AUSM-IT scheme from the AUSM+-up scheme is applicable to any other Godunov-type 
scheme.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Convective and acoustic waves may propagate together in compressible flows, at time and space scales that may be very 
different, and with possible interactions. Design of numerical methods able to handle properly these phenomena remains 
a challenging task, even if viscous effects are neglected. With a co-located arrangement of the unknowns, accuracy and 
robustness of the numerical method depend on the way of interpolation on the cell or element faces. Two broad categories 
of methods can be identified, according to the equations they are derived from: (1) Methods solving a Riemann problem at 
each face by using characteristic equations (these methods are referred to as Godunov-type schemes in the present study); 
(2) Momentum interpolation methods, derived from the momentum equation. In our opinion, the relations between these 
two approaches merit investigation in order to improve their respective capabilities.

The difficulties arising at low Mach number when Godunov-type schemes are used have been widely studied, mainly 
for steady calculations (see e.g. [1–3,11]). Denoting by Mr a reference Mach number in the flow, it has been recognized 
that avoiding the checkerboard decoupling problem needs a 1/M2

r -scaling of the pressure gradient term in the face velocity 
or the face mass flux. This 1/M2

r -scaling implies that the thermodynamic and the acoustic pressures are constant in space 
at the convective scale, which conforms to the continuous asymptotic analysis, provided that suitable boundary conditions 
are adopted (see e.g. [3,6]). For AUSM-type schemes, it was shown by Dellacherie [1] that the 1/M2

r -scaling is also nec-
essary for avoiding spurious acoustic waves when starting from so-called well-prepared initial conditions. However, there 
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is experimental evidence that this property does not guarantee accurate calculation of acoustic propagation in low Mach 
number flows. In our earlier work [15], it was thus observed that for unsteady calculations of low Mach number flows, the 
presence of the time-step in the pressure–velocity coupling coefficient of the face velocity, as for momentum interpolation, 
is beneficial. Based on this observation, an improvement of the AUSM+-up scheme was then proposed in [14], by mimicking 
the pressure–velocity coupling of the momentum interpolation. However, we noted that the quality of the momentum inter-
polation, if properly defined for unsteady calculations in a Rhie–Chow-like manner (see [15–17]), was not reached for some 
tests at low Mach number. Improvement of predictions for unsteady low Mach number flows by the AUSM+-up scheme and 
the related SLAU scheme (Simple Low Dissipative AUSM) by introduction of Strouhal number dependence in the coefficient 
of the pressure dissipation term in the mass flux expression was also obtained by Sachdev et al. [19]. These authors demon-
strated that the scaling of the coupling coefficient has to be quite different for steady low Mach number problems and for 
unsteady low Mach number problems. By changing the scaling, they proved significant improvement with the AUSM+-up 
scheme for unsteady low Mach number problems with hydrodynamic coupling between velocity and pressure (vortex prop-
agation) and with acoustic coupling (propagation of a pressure oscillation and propagation of weak shocks and expansion 
fans). They also illustrated oscillatory behavior of the SLAU method for steady low Mach number flows. However, it remains 
unclear how to combine the different scaling factors and, for instance, to ensure that the correct steady scaling is obtained 
for the solution of a steady low Mach number problem calculated with an unsteady method. A similar remark holds for 
our own work [14]. A particular problem with the AUSM+-up method is that the damping by the pressure difference term 
in the mass flux expression which is appropriate for steady low Mach number flow is too high for propagation of smooth 
acoustic signals in unsteady low Mach number flows. On the other hand, as observed by Sachdev et al. [19], the dissipation 
is too low for propagation of acoustic discontinuities (low Mach number Riemann problems). So, it becomes very delicate 
to tune the pressure dissipation such that it functions properly for the different types of low Mach number flows. Too low 
pressure dissipation in the mass flux definition of the SLAU method for simulation of propagation of discontinuities in low 
Mach number flows was also remarked by Shima [20]. He proved that it is possible to eliminate oscillations by increasing 
the coefficient of the pressure dissipation term in the mass flux definition by a sensor for wiggles. Of course, the larger 
dissipation smears somewhat the discontinuities. The conclusion is that methods that rely on tuning of the coefficient of 
the pressure dissipation term in the mass flux definition in AUSM-type discretizations are very delicate and certainly have 
not reached maturity yet.

Observing that an inertia term is present in the face velocity expression by the momentum interpolation, and missing in 
the face velocity expression by the scheme proposed in [14], we propose in the present study to introduce this inertia term 
in the face velocity of Godunov-type schemes. The momentum interpolation is used as a guideline to accommodate this 
term. The resulting pressure–velocity coupling exhibits then the suitable 1/M2

r -scaling for low Mach number steady calcu-
lations. In the unsteady case, the pressure–velocity coupling exhibits also the proper Mach number scaling and time-step 
dependence, identified in [14,15]. Moreover, the inertia term is introduced such that the steady state, if it exists, does not 
depend on the time-step.

As pointed out in [1,2], an asymptotic property providing insights for the design of Godunov-type schemes that remain 
accurate at low Mach number is the linear acoustic energy conservation in the low Mach number regime, which holds if 
periodic boundary conditions are adopted. This property is used in the present study as a guideline to assess the proper way 
of inertia term interpolation, as well as the proper way of pressure interpolation, in order to enforce the acoustic energy 
conservation at the discrete level.

The key point is that, if the acoustic component of the pressure is centrally interpolated in the low Mach number 
limit, the presence of the inertia term in the face velocity enforces acoustic energy conservation at the discrete level. More 
precisely, the 1/Mr-scaling of the numerical dissipation that arises from the spatial discretization of the linear acoustic 
wave equation, is thus counterbalanced. Conservation of acoustic energy is clearly a prerequisite for accurate calculation of 
unsteady low Mach number flows including acoustic features.

2. Foundation of Godunov-type schemes on characteristic equations

In this section, the Mach number scaling of the pressure gradient term in the face velocity expression of Godunov-type 
schemes is examined in the light of the characteristic equations from which these schemes are drawn.

Reference pressure pr, density �r and velocity vr thought of as a convective quantity, are introduced. A reference Mach 
number is then defined as Mr = vr/

√
pr/�r. Reference length lr and duration tr, thought of as a convective quantity, are also 

considered, as well as a reference Strouhal number, Str = (lr/vr)/tr. Notice that it is possible to choose the reference length 
lr as tr

√
pr/�r, which is an acoustic length. Then, the reference Strouhal and Mach numbers are related by Str = 1/Mr. 

Here however, the possibility is left open for another choice of reference duration, so that we will work with the reference 
Strouhal number Str. Associated with the Euler equations in dimensional form,

∂t� + ∇ · (�v) = 0, (1a)

∂t(�v) + ∇ · (�v ⊗ v) + ∇p = 0, (1b)

∂t(�E) + ∇ · (�H v) = 0, (1c)

E = e + 1

2
‖v‖2, (1d)
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