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We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex 
compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian 
approach when the flow is linear or if the mesh size is equal to zero; as a result, we use 
the term essentially Lagrangian for the proposed approach. The motivation for developing 
a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some 
advantages over other mesh topologies. Notable advantages include reduced complexity in 
generating conformal meshes, reduced complexity in mesh reconnection, and preserving 
tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron 
meshes do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid 
hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH 
and CCH approaches calculate the strain via the tetrahedron, which can cause artificial 
stiffness on large deformation problems. To resolve the stiffness problem, we adopt the 
point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via 
an integration path around the node. The PCH approach stores the conserved variables 
(mass, momentum, and total energy) at the node. The evolution equations for momentum 
and total energy are discretized using an edge-based finite element (FE) approach with 
linear basis functions. A multidirectional Riemann-like problem is introduced at the center 
of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation 
is enforced at each tetrahedron center. The multidimensional Riemann-like problem used 
here is based on Lagrangian CCH work [8,19,37,38,44] and recent Lagrangian SGH work 
[33–35,39,45]. In addition, an approximate 1D Riemann problem is solved on each face of 
the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann 
problem produces fluxes [18] that remove a volume error in the PCH discretization. 
A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the 
new hydrodynamic scheme are discussed; likewise, results from numerical test problems 
are presented.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC 
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1. Introduction

The Lagrangian hydrodynamic approach is widely used to calculate problems involving shocks. Lagrangian calculations 
typically use polyhedral meshes with 8 or more nodes, such as hexahedron, on 3-dimensional (3D) problems. Polyhedral 
meshes with 8 or more nodes have merits, but they have some weakness in comparison to tetrahedron meshes, which have 
4 nodes. Several notable advantages of tetrahedral meshes include: reduced complexity in generating conformal meshes, 
reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. Due to these 
advantages, we seek to develop an accurate hydrodynamic algorithm suitable for shocks and smooth flows on tetrahedron 
meshes.

Two common Lagrangian methods are the staggered-grid hydrodynamic approach (SGH) [9,11,12,58,63] and the cell-
centered hydrodynamic (CCH) approach [1,2,8,19,37,38,44]. The SGH approach solves the momentum conservation equation 
and the internal energy evolution equation on staggered control volumes. The control volume for the internal energy evo-
lution equation coincides with the cell. The control volume for the momentum conservation equation encircles the node 
and is commonly termed the “dual grid”. The vertices of the dual grid coincide with the cell centers. In SGH, the kinematic 
variables such as velocity are stored at the node (i.e vertices of the cell) and the thermodynamic variables such as pres-
sure and internal energy are stored at the cell center. The strain is calculated on the cell boundary. The CCH approach is a 
spatially collocated approach so the conservation equations for momentum and total energy are solved on a single control 
volume that coincides with the cell boundary. The strain is also calculated on the cell boundary. In this work, we seek to 
model shocks on tetrahedron meshes, and unfortunately, the SGH and CCH approaches do not necessarily perform well on 
tetrahedron meshes. Scovazzi [52] performed analysis on the compatible SGH approach [9,11] and showed the approach 
has undesirable error modes. Scovazzi presented calculations using tetrahedron meshes that support the numerical analysis 
and the results illustrate the compatible SGH approach does not perform well on tetrahedron meshes. A similar study with 
triangular grids was performed earlier by Loubère et al. [32]. Loubère demonstrated that the compatible SGH approach does 
not perform well on triangular grids.

Another Lagrangian approach is the point-centered hydrodynamic (PCH) method [14–16,27,28,51–53]. The PCH approach 
is a spatially collocated method where the conservation equations for momentum and total energy are solved on the dual 
grid around the node. Likewise, the strain is calculated on the same dual grid. The PCH approach is of interest to this 
work because it has been used on triangular and tetrahedron meshes. Furthermore, Scovazzi [52] presents theory and 
demonstrates that the PCH approach is superior to the compatible SGH [9,11,12] approach on tetrahedron meshes. The 
Lagrangian PCH approach was actively studied in the context of the Free-Lagrange framework [15]. The concept behind 
Free-Lagrange is to reconnect the mesh when the mesh becomes deformed. Of interest to this work is the Lagrangian 
scheme and not the reconnection step. Crowley [15] developed a finite volume PCH approach for incompressible flows 
on triangular grids. Fritts and Boris [27] followed the work in [15] and proposed a finite difference PCH approach for 
incompressible free surface flows. Multiple PCH algorithms were developed in the 1980s for compressible flows in the 
Free-Lagrangian framework. Examples include: the PCH approach by Crowley [16], the PCH approach by Clark [14] in the 
HOBO code, the PCH approach by Gittings [28] in the TRIX code, and the PCH approach by Sahota [53]. The approach in [28]
is of importance because the method replaced the artificial viscosity with a Godunov scheme [29,30]. A different Godunov 
method was proposed by Addessio et al. [2]. The approach in [2] used a CCH Godunov hydrodynamic scheme [1] on the 
dual grid, which created a PCH-like approach [25]. The approach by Addessio et al. evolves the dual grid using the Riemann 
velocities, whereas, the PCH approach evolves the dual grid using the nodal velocities. This distinction is important to this 
work because an undesirable volume error can arise if the dual grid is evolved using the nodal velocities. The algorithms 
above used either a finite difference or finite volume discretization. The finite element (FE) approach is a viable alternative 
to the finite difference and finite volume approaches. Recently, Scovazzi et al. [51,52] proposed a variational finite element 
PCH approach. The approach was applied to hexahedron and tetrahedron grids. The approach in [51,52] relies on an artificial 
viscosity model. An alternative FE approach is the edge-based FE Godunov approach. An ALE edge-based FE Godunov PCH 
approach was proposed by Waltz et al. [61] for tetrahedron grids. In this work, we build on the research in [59–61] and 
propose an essentially Lagrangian FE PCH Godunov-like method.

The proposed Lagrangian FE PCH approach discretizes the conservation equations for momentum and total energy with 
linear basis functions. The FE approach used here has many similarities to the finite volume approach. A unique feature 
of this work is that a multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for 
discontinuities in the flow such as a shock. Using a multidirectional Riemann-like solver differs from the edge-based FE PCH 
Godunov methods which solve an approximate 1D Riemann problem on the edges [59–61]. Conservation is enforced at each 
tetrahedron center instead of along an edge. The multidimensional Riemann-like problem used here is based on Lagrangian 
CCH work [8,19,37,38,44] and recent Lagrangian SGH work [33–35,39,45]. The dual grid control volume will evolve as a 
function of the nodal velocities which introduces a volume error. The volume error is removed by solving an additional 1D 
Riemann problem on each face of the nodal control volume. The 1D Riemann problem produces mass, momentum, and total 
energy fluxes [18] that remove the volume error. A 2-stage Runge–Kutta method is used to evolve the solution in time.

The layout of the paper is as follows. The nomenclature used in the paper is discussed in Section 2. The governing 
equations are discussed in Section 3. The multidirectional Riemann-like problem at the tetrahedron center is discussed in 
Section 4. The volume discretization, associated volume change error, and volume correction is discussed in Section 5. The 
1D Riemann corrective fluxes are discussed in Section 6. The details on extending the algorithm to 2nd order is discussed 
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