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In this paper we present an algorithm for adaptive sparse grid approximations of quantities 
of interest computed from discretized partial differential equations. We use adjoint-based 
a posteriori error estimates of the physical discretization error and the interpolation error 
in the sparse grid to enhance the sparse grid approximation and to drive adaptivity of the 
sparse grid. Utilizing these error estimates provides significantly more accurate functional 
values for random samples of the sparse grid approximation. We also demonstrate that 
alternative refinement strategies based upon a posteriori error estimates can lead to further 
increases in accuracy in the approximation over traditional hierarchical surplus based 
strategies. Throughout this paper we also provide and test a framework for balancing the 
physical discretization error with the stochastic interpolation error of the enhanced sparse 
grid approximation.

© 2014 Published by Elsevier Inc.

Partial differential equations (PDE) are used to simulate a wide range of phenomenon and are often used to inform 
design decisions and to estimate risk in systems with large human and/or financial impact but with limited capacity for ex-
perimentation. Given the importance of these applications the ability to accurately quantify uncertainty in model predictions 
is essential.

Most uncertainty quantification (UQ) studies focus on estimating parametric uncertainty. In such analysis, the uncertainty 
in the input data, such as model coefficients, forcing terms etc., is usually represented through a finite number of random 
variables with a known probability distribution. The goal of the study is then to compute the effect of the varying input 
data on the system response, and in many cases, to calculate the statistics of the response.

The accuracy to which uncertainty can be quantified is limited by the computational resources available to resolve the 
governing equations. Many models require vast amounts of computational effort and thus the number of model evaluations 
that can be used to interrogate the uncertainty in the system behavior is limited. Consequently a significant portion of 
methods developed for uncertainty quantification (UQ) in recent years have focused on constructing surrogates of expensive 
simulation models using only a limited number of model evaluations.

The most widely adopted approximation methods are based on generalized polynomial chaos (PC) expansions [14,26], 
sparse grid interpolation [19,20] and Gaussian process (GP) models [24]. The performance of these methods is problem 
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dependent and in practice it is difficult to estimate the accuracy of the approximation constructed. Cross-validation is one 
means of estimating the accuracy of the approximation, however the accuracy of the cross-validation prediction of the error 
is limited. Moreover, cross validation is not readily applied for approximation methods which require structured model 
samples, such as sparse grid interpolation and many forms of pseudo-spectral projection.

In this paper we utilize sparse grid interpolation to approximate model responses. Sparse grids can be built using local or 
global basis functions and have well established and effective adaptivity procedures which can be leveraged in conjunction 
with good error estimates to concentrate computational effort to resolving important dimensions and/or regions of the 
random parameter space. Unlike regression based PCE or Gaussian process models, sparse grids can be used regardless of 
the computational budget of the UQ analysis. For example sparse grids can be used to approximate a model response using 
tens to millions of model runs, whereas the aforementioned alternatives have upper limits in the low thousands imposed 
by the need to solve large linear systems.

Throughout this paper, we will use J (ξ) to denote the exact response (quantity of interest) from a partial differential 
equation that depends on the unknown variable ξ . When solving PDEs using techniques such as the finite element method 
the physical discretization error will be non-zero. We use Jh(ξ) to denote the response from the discretized model. As 
previously mentioned, solving the discretized model is often computationally expensive and therefore we need to consider 
a surrogate approximation of Jh(ξ), which we denote Jh,n(ξ). Given these approximations, the error in the response can be 
decomposed into two components∥∥ J (ξ) − Jh,n(ξ)

∥∥ ≤ ∥∥ J (ξ) − Jh(ξ)
∥∥︸ ︷︷ ︸

I

+∥∥ Jh(ξ) − Jh,n(ξ)
∥∥︸ ︷︷ ︸

II

(0.1)

where: I is the finite element physical discretization error; and II is the stochastic approximation error introduced by approxi-
mating the quantity of interest by a sparse grid interpolant.

Recently, a posteriori error estimation has arisen as a promising approach to estimate the error in approximate input–
output relationships. Adjoint-based a posteriori error estimation was originally developed to estimate error in numerical 
approximations of deterministic partial differential equations (PDE) [2,10,15,23], but recent modifications allow similar ideas 
to be used to estimate error in approximations of quantities of interest from PDEs with uncertain parameters. This relatively 
new approach, introduced in [7] and further analyzed in [6,8], is based on goal-oriented adjoint-based error estimates and 
is used to predict error in samples of a response surface approximation of a specific quantity of interest. Similar to stan-
dard adjoint-based error estimation procedures, this new approach includes the physical discretization error if the adjoint 
problem is approximated in a higher-order discretization space. However, the error estimate from this new approach also 
contains an approximation of the error in the stochastic discretization due to the evaluation of the response surface model 
rather than the PDE. In [6,8], it was shown that, for spectral and pseudo-spectral Galerkin approximations, this estimate of 
the stochastic interpolation error is higher-order even if a low order approximation of the adjoint is used for the stochastic 
approximation.

In general, it is inefficient to reduce the stochastic error to a level below the error introduced by the deterministic 
discretization. Much of the existing literature focuses on minimizing the stochastic approximation error, however only a 
few attempts have been made to discuss or account for the combined effect of deterministic and stochastic approximation 
error. Error bounds for the stochastic approximation error for isotropic sparse grid approximations of elliptic PDEs using 
Clenshaw–Curtis or Gaussian abscissa are given in [21]. In this paper, we use adjoint-based error estimates to ensure that 
the error in the stochastic approximation is never significantly less than the physical discretization error.

Our goal in this paper is to utilize adjoint-based a posteriori error estimates to efficiently compute pointwise approxi-
mations of specific quantities of interest, usually computed from PDE solutions, using adaptive sparse grid approximations. 
Specifically, we aim to

• Provide theoretical bounds on the error in a posteriori enhanced Clenshaw–Curtis sparse grids.
• Numerically demonstrate the enhancement results in [6] extend to adaptive sparse grid approximations.
• Present new refinement strategies for sparse grids based on a posteriori error estimates.
• Present a strategy for reducing the cost of computing a posteriori error estimates.
• Provide a criterion to stop sparse grid refinement when the stochastic approximation error of the sparse grid is approx-

imately equal to the physical discretization error.

The remainder of this paper is organized as follows. Section 1 introduces the general model problem we are interested 
in. Sparse grid approximation is reviewed in Section 2 and we recall the standard adjoint-based posteriori error analysis 
for deterministic PDEs in Section 3. In Section 4 we formulate an a posteriori error estimate for samples of a sparse grid 
surrogate and derive theoretical bounds on the error in the a posteriori error estimate. Section 5, presents new adaptive 
strategies for sparse grid refinement that leverage a posteriori error estimates and Section 6 introduces the sparse grid ap-
proximation of the error estimate and our stopping criteria based on an estimate the physical discretization error. Numerical 
results are presented in Section 7 and our conclusions are presented in Section 8.
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