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We present a novel way of deciding when and where to refine a mesh in probability space 
in order to facilitate uncertainty quantification in the presence of discontinuities in random 
space. A discontinuity in random space makes the application of generalized polynomial 
chaos expansion techniques prohibitively expensive. The reason is that for discontinuous 
problems, the expansion converges very slowly. An alternative to using higher terms in 
the expansion is to divide the random space in smaller elements where a lower degree 
polynomial is adequate to describe the randomness. In general, the partition of the random 
space is a dynamic process since some areas of the random space, particularly around the 
discontinuity, need more refinement than others as time evolves. In the current work we 
propose a way to decide when and where to refine the random space mesh based on 
the use of a reduced model. The idea is that a good reduced model can monitor accurately, 
within a random space element, the cascade of activity to higher degree terms in the chaos 
expansion. In turn, this facilitates the efficient allocation of computational sources to the 
areas of random space where they are more needed. For the Kraichnan–Orszag system, the 
prototypical system to study discontinuities in random space, we present theoretical results 
which show why the proposed method is sound and numerical results which corroborate 
the theory.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Generalized polynomial chaos (gPC) is a frequently used approach to represent uncertain quantities when solving dif-
ferential equations involving uncertainty in initial conditions, boundary conditions, randomness in material parameters and 
etc. Based on the results of Wiener [1], spectral expansion employing Hermite orthogonal polynomials was introduced by 
Ghanem and Spanos [2] for various uncertainty quantification problems in mechanics. This method was generalized by Xiu 
and Karniadakis [3,4] to include other families of orthogonal polynomials. When the solution is sufficiently regular with 
respect to the random inputs, the gPC expansion has an exponential convergence rate [3]. However, if the solution is not 
smooth, the rate of convergence of gPC deteriorates similarly to the deterioration of a Fourier expansion of non-smooth 
functions [5]. The reason for the lack of smoothness can be, for example, the presence of certain values of the random input 
around which the solution may change qualitatively (this is called a discontinuity in random space). For such problems, the 
brute force approach of using more terms in the gPC expansion is prohibitively expensive.
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An alternative to using higher terms in the expansion is to divide the random space into smaller elements where a lower 
degree polynomial is adequate to describe the randomness [6]. This approach requires a criterion (a mechanism) to decide 
how to best partition the random space. Ideally, the criterion will focus on parts of random space, like discontinuities, where 
there is more sensitive dependence on the value of the random parameters. In addition to the presence of discontinuities in 
random space, there are problems which simply have too many sources of uncertainty to allow for a high degree expansion 
in all dimensions of random space. For some problems not all of the sources of uncertainty are equally important. This 
means that some directions in random space need more refinement than others. So, one needs to be able to identify 
correctly these directions and allocate accordingly the available computational resources.

In [7], one of the current authors proposed a novel algorithm for performing mesh refinement in physical space by using 
a reduced model. The algorithm is based on the observation that the need for mesh refinement is dictated by the cascade 
of energy (or mass depending on the physical context) to scales smaller than the ones resolved. A good reduced model 
should be able to effect with accuracy the necessary cascade of energy across scales. Thus, a good reduced model can be 
used to decide when to refine. In [7], a reduced model, called the t-model, which was derived through the Mori–Zwanzig 
formalism [8] was used to monitor the cascade of energy for partial differential equations that develop singularities. This 
particular model was constructed under the assumption that there is no timescale separation between the resolved and 
unresolved scales. This absence of timescale separation is an essential feature of problems which require mesh refinement. 
The solution exhibits small scale features that are important for the dynamic evolution of the solution at all scales.

In the current work we have used the same idea to aid with the task of mesh refinement in random space. In particular, 
we construct a reduced model for the system resulting from a gPC expansion of the random solution in each element of 
the random space (for the problems examined here we have also used the t-model as a reduced model). Then, this reduced 
model is used to monitor the cascade of energy from the resolved to the unresolved terms in the gPC expansion within an 
element.

What is needed to define a mesh refinement algorithm is a criterion to determine whether it is time to perform mesh 
refinement. In [7], this criterion was based on monitoring the contribution of memory term from reduced model to the rate 
of change of the L2 norm of the solution at the resolved scales as computed by the reduced model (note that the L2 norm 
corresponds to the mass or energy in many physical contexts). When this contribution value exceeds a prescribed tolerance 
the algorithm performs mesh refinement. In the current work we use the same criterion to decide if a random element 
needs to be refined. The suitability of the contribution of memory term to the rate of change of the L2 norm as an indicator 
for the need to refine is shown in Appendix C. In particular, we show that in Kraichnan–Orszag system such contribution 
for the resolved scales has the same functional form as the expression for the rate of change of the L2 error of the reduced 
model. Thus in this particular system, by keeping, through mesh refinement, the memory term contribution to the rate of 
change of the L2 norm for the resolved scales under a prescribed tolerance, we can keep the error of the calculation under 
control (see Section 3 for more details).

The paper is organized as follows. In Section 2, we recall the framework for the stochastic Galerkin formulation of a 
random system. The proposed mesh refinement algorithm is presented in Section 3. Section 4 contains numerical results 
from the application of the algorithm. Conclusions are drawn in Section 5. Finally, in Appendix A we briefly state the 
Mori–Zwanzig formalism. Appendix B contains the Galerkin formulation of the Kraichnan–Orszag system as well as the 
reduced model used in the mesh refinement algorithm. Appendix C involves a proof of convergence of the reduced model.

2. gPC representation of uncertainty

Let (Ω, A, P) be a probability space, where Ω is the event space and P is the probability measure defined on the 
σ -algebra of subsets of Ω . Let ξ = (ξ1, · · · , ξd) be a d-dimensional random vector for the random event ω ∈ Ω . Without 
loss of generality, consider an orthonormal generalized polynomial chaos basis {Φi}∞|i|=0 spanning the space of second-order 
random processes on this probability space (i = (i1, · · · , id) ∈ Nd

0 is a multi-index with |i| = i1 + · · ·+ id). The basis functions 
Φi(ξ(ω)) are polynomials of degree |i| with orthonormal relation

〈Φi,Φj〉 = δij, (1)

where δij is the Kronecker delta and the inner product between two functions f (ξ) and g(ξ ) is defined by〈
f (ξ), g(ξ)

〉 = ∫
Ω

f (ξ)g(ξ)dP(ξ). (2)

A general second-order random process u(ω) ∈ L2(Ω, A, P) can be expressed by gPC as

u(ω) =
∞∑

|i|=0

uiΦi
(
ξ(ω)

)
. (3)

The mean and variance of u(ω) can be expressed independently of the choice of basis as

E
(
u(ξ)

) = u0, Var
(
u(ξ)

) =
∞∑

|i|=1

u2
i , (4)
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