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This paper is devoted to the construction and analysis of finite difference methods 
for solving a class of time-fractional subdiffusion equations. Based on the certain 
superconvergence at some particular points of the fractional derivative by the traditional 
first-order Grünwald–Letnikov formula, some effective finite difference schemes are 
derived. The obtained schemes can achieve the global second-order numerical accuracy in 
time, which is independent of the values of anomalous diffusion exponent α (0 < α < 1) 
in the governing equation. The spatial second-order scheme and the spatial fourth-order 
compact scheme, respectively, are established for the one-dimensional problem along with 
the strict analysis on the unconditional stability and convergence of these schemes by the 
discrete energy method. Furthermore, the extension to the two-dimensional case is also 
considered. Numerical experiments support the correctness of the theoretical analysis and 
effectiveness of the new developed difference schemes.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the recent few decades, the remarkable applications of fractional calculus in diverse engineering fields have been 
gradually realized and meanwhile, the discussion on the related fractional differential equations becomes a hot topic of 
many scholars. To seek the exact solutions to these differential equations is not an easy job in spite of some research results 
around the world on the subject [1–4]. Effective and simple numerical methods for solving these equations tend to be 
favored in practical computations, for instance, readers can refer to the works [5–14].

Anomalous diffusion equations are often used to describe the transport dynamics in various complex systems where 
Gaussian statistics are no longer followed and the Fick second law fails to describe the related transport behaviors. Anoma-
lous diffusion in the presence of an external velocity or force field has been modeled in numerous ways, one of which 
is given in terms of continuous time random walk (CTRW) models. Based on the CTRW models, a generalized diffusion 
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equation of fractional order is derived in [15]. Until now, two forms of this kind of equations often have appeared: one is 
written as [16–18]

C
0D

α
t u(x, t) = uxx(x, t) + f (x, t), (x, t) ∈ (a,b) × (0, T ], (1.1)

where 0 < α < 1 and C
0Dα

t is the α-th order Caputo time-fractional operator defined by

C
0D

α
t u(x, t) = 1

Γ (1 − α)

t∫
0

(t − s)−α∂su(x, s)ds,

and we call it the time Caputo-type subdiffusion case; the other takes the form of [19–21,23,26]

ut(x, t) = RL
0 D1−α

t uxx(x, t) + g(x, t), (x, t) ∈ (a,b) × (0, T ], (1.2)

where 0 < α < 1 and RL
0 Dα

t is the α-th order Riemann–Liouville fractional operator defined by

RL
0 Dα

t u(x, t) = 1

Γ (1 − α)

∂

∂t

t∫
0

(t − s)−αu(x, s)ds,

and we call it the time Riemann–Liouville-type subdiffusion equation. These two forms are equivalent under some regularity 
assumption for u(x, t) in time and g(x, t) = RL

0 D1−α
t f (x, t); see, for details, [27].

Traditionally, the direct difference approximation for the time-fractional derivative covers two ways: the L1 formula and 
the Grünwald–Letnikov formula. The former is based on the piecewise linear interpolating approximation with respect to t
for the integrand u(x, t) inside the integral in the Caputo fractional derivative sense, while the latter is often used to handle 
the Riemann–Liouville time-fractional derivative. For the α-th (0 < α < 1) fractional derivative, the numerical accuracy of L1
formula is proved to be 2 − α [16,17], which is less than two, and that of the Grünwald–Letnikov formula depends on the 
choice of generating function. The common generating function with coefficients in this formula is chosen to be (1 − z)α , 
and only the first-order accuracy is attained [20–25].

Recently, the great efforts to enhance the numerical accuracy of approximating time-fractional derivatives have been 
made. Cao and Xu [28] started from the equivalent Volterra integral form of the original time Caputo-type fractional differ-
ential equations to design the high order numerical scheme in time. The computation of coefficients in related numerical 
methods is quite complex and expensive. Gao, Sun and Zhang [29] presented a modified L1 numerical differentiation for-
mula to directly discretize the Caputo time-fractional derivative and higher-order numerical accuracy seems to be realized, 
where the strict convergence analysis for the corresponding difference scheme has not been available. Wang and Vong [30]
established some difference schemes with the second-order accuracy in time for solving the time-fractional subdiffusion 
and diffusion-wave equations by mean of weighed Grünwald–Letnikov formula. The similar techniques were used to deal 
with the problem with Neumann boundary conditions in [31]. Ding and Li [32] proposed a second-order difference ap-
proximation for the Riemann–Liouville time-fractional derivative by the Grünwald–Letnikov formula with the generating 
function (3/2 − 2z + z2/2)α . The obtained coefficients were more complex than the usual first-order Grünwald–Letnikov for-
mula. Here, we shall show the alternative way to design the high-order finite difference scheme using the simple first-order 
Grünwald–Letnikov formula to approximate the Riemann–Liouville time-fractional derivative. Zhao and Deng [34] investi-
gated a series of high order pseudo-compact schemes for space fractional diffusion equations based on the superconvergent 
approximations for fractional derivatives.

The key point of this approach is based on the significant work by Nasir et al. [33], where the superconvergent points 
of the first-order Grünwald–Letnikov formula to approximate the Riemann–Liouville time-fractional derivative are exactly 
pinpointed. Namely, the standard first-order Grünwald–Letnikov formula or shifted first-order Grünwald–Letnikov formula to 
approximate the fractional derivative value at current point is only first-order accurate, whereas one-order higher numerical 
accuracy at some shifted positions can be obtained. To our knowledge, the technique using such superconvergence to directly 
improve the numerical accuracy of approximating the time-fractional derivative has not appeared in the literature, except 
the very recent work by Dimitrov in [35] for the one-dimensional time Caputo-type subdiffusion case. In order to clarify 
the success of this idea, we begin with the one-dimensional problem and construct a second-order accurate difference 
scheme both in time and space for solving the time-fractional sub-diffusion equation. Then the spatial fourth-order compact 
scheme is also established along the similar route. Furthermore, the extension to the two-dimensional case is also taken 
into account.

The outline of this paper is as follows. In Section 2, a second-order difference scheme both in time and space is derived 
by considering the governing equation at the superconvergent point of the standard first-order Grünwald–Letnikov formula 
for the Riemann–Liouville derivative. The unconditional stability and convergence of the second-order scheme are proved 
in Section 3 by the discrete energy method. In Section 4, the compact difference scheme with the convergence of second 
order in time and fourth order in space is constructed. The stability and convergence are also given. Section 5 is devoted 
to the discussion of the two-dimensional case. Numerical examples are included in Section 6 to verify the efficiency of the 
proposed schemes. A brief conclusion ends this work finally.
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