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We present an efficient and robust semi-analytical formulation to compute the electric 
potential due to arbitrary-located point electrodes in three-dimensional cylindrically 
stratified media, where the radial thickness and the medium resistivity of each cylindrical 
layer can vary by many orders of magnitude. A basic roadblock for robust potential 
computations in such scenarios is the poor scaling of modified-Bessel functions used 
for computation of the semi-analytical solution, for extreme arguments and/or orders. To 
accommodate this, we construct a set of rescaled versions of modified-Bessel functions, 
which avoids underflows and overflows in finite precision arithmetic, and minimizes 
round-off errors. In addition, several extrapolation methods are applied and compared 
to expedite the numerical evaluation of the (otherwise slowly convergent) associated 
Sommerfeld-type integrals. The proposed algorithm is verified in a number of scenarios 
relevant to geophysical exploration, but the general formulation presented is also applicable 
to other problems governed by Poisson equation such as Newtonian gravity, heat flow, and 
potential flow in fluid mechanics, involving cylindrically stratified environments.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Resistivity logging is extensively used for detecting, characterizing, and analyzing hydrocarbon-bearing zones in the sub-
surface earth [30,17,7,4,13,14,35,3]. This sensing modality employs electrode-type devices mounted on a mandrel that inject 
electric currents into the surrounding earth formation [5,29]. The ensuing electric potential is then measured at different lo-
cations to provide estimates for the surrounding resistivity. Many brute-force numerical techniques such as finite-differences, 
finite elements, numerical mode-matching, and finite volumes method can be used to model the response of resistivity 
logging tools [12,8,10,26,23,24,20,25,21,22,11,6,9]. Brute-force techniques are rather versatile and applicable to arbitrary re-
sistivity distributions; however, at the same time, this precludes optimality in particular cases of special interest, such as 
when resistivity logging environment can be represented as a cylindrically stratified medium [2]. Depending on the imple-
mentation, brute-force techniques may have difficulties handling extreme sharp discontinuities in the coefficients, as is the 
case for the resistivity parameter for the physical scenario considered here, which can change by many orders of magnitude 
across adjacent layers.
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In this paper, a robust semi-analytical formulation for computing the electric potential due to arbitrary-located point 
electrodes in three-dimensional cylindrically stratified media is proposed. The present formulation is based on a series ex-
pansion in terms of azimuth Fourier modes and a spectral integral over the vertical wavenumber along the axial direction. 
The resulting problem in terms of the radial variable yields a set of modified Bessel equations. The present formulation re-
moves roadblocks for numerical computations associated with the poor scaling of modified-Bessel functions for very small 
and/or very large arguments and/or orders [27,31,1]. This is done by constructing a set of rescaled, modified-Bessel functions 
that can be stably evaluated under double precision arithmetic, akin to what has been done in the past for ordinary (non-
modified) Bessel functions [16]. The present formulation also carefully manipulates the analytical formulae for the potential 
in such media to yield a set of integrand expressions that can be computed in a robust manner under double precision for a 
wide range of layer thicknesses, layer resistivities, and source and observation point separations. Finally, a number of accel-
eration techniques are implemented and compared for the efficient numerical integration of the Sommerfeld-type (spectral) 
integrals, which otherwise suffer from slow convergence. The proposed algorithm is verified in a number of practical scenar-
ios relevant to geophysical exploration. More generally, the mathematical setting here corresponds to the classical problem 
of obtaining the Green’s function for the steady diffusion equation (Poisson problem) with discontinuous coefficients in a 
separable geometry. As such, the general formalism presented here is also applicable to other problems governed by Pois-
son equation such as Newtonian gravity, heat flow, elasticity, neutron transport, and potential flows in fluid mechanics, in 
cylindrically stratified geometries.

2. Formulation

2.1. Electric potential in homogeneous media

In a homogeneous medium, the electric potential ψ from a current electrode at the origin writes as [31]

ψ = I
4πσ

√
ρ2 + z2

= I
2π2σ

∞∫
0

K0(λρ) cos(λz)dλ, (1)

where I is the electric current flowing into the medium from the electrode, σ is the conductivity of the medium, and K0(·)
is the modified-Bessel function of the second kind of the zeroth order. For the second equality, the complete Lipschitz–
Hankel integral [32] is employed. When the source is off the origin, higher order azimuthal modes appear. Using the 
addition theorem for K0, (1) is modified to

ψ = I
2π2σ

∞∫
0

K0
(
λ
∣∣ρ − ρ ′∣∣) cos

(
λ
(
z − z′))dλ

= I
2π2σ

∞∑
n=−∞

ein(φ−φ′)
∞∫

0

In(λρ<)Kn(λρ>) cos
(
λ
(
z − z′))dλ, (2)

in terms of modified-Bessel functions of both first, In(·), and second, Kn(·), kinds. In the above, primed coordinates 
(ρ ′, φ′, z′) represent the source location and unprimed coordinates (ρ, φ, z) represent the observation point. Also, ρ< =
min(ρ, ρ ′) and ρ> = max(ρ, ρ ′).

2.2. Electric potential in cylindrically stratified media

In a cylindrically stratified medium, boundary conditions at the interfaces need to be incorporated. Let us first consider 
the case with two distinct cylindrical layers, as depicted in Fig. 1. When the source is embedded in layer 1, we denote it 
the outgoing-potential case. In this case, the primary potential ψ p is a function of Kn(λρ) because In(λρ) diverges as ρ goes 
to infinity. On the other hand, when the source is embedded in layer 2, we denote it the standing-potential case and ψ p is 
a function of In(λρ) instead of Kn(λρ) because Kn(λρ) diverges when ρ goes to zero. For the outgoing-potential case, the 
n-th harmonic with ein(φ−φ′) dependence in layer 1 and layer 2 can be expressed, resp., as

ψ1 = [
Kn(λρ) + R12 In(λρ)

]
A0, (3a)

ψ2 = T12 Kn(λρ)A0, (3b)

where R12 and T12 are the (local) reflection and transmission coefficients at the boundary a1, and A0 is an arbitrary 
amplitude of the primary potential. Applying the boundary conditions [31] at the interface, we obtain

R12 = (σ2 − σ1)Kn(λa1)K ′
n(λa1)

σ1 I ′n(λa1)Kn(λa1) − σ2 In(λa1)K ′
n(λa1)

, (4a)

T12 = σ1

λa1[σ1 I ′n(λa1)Kn(λa1) − σ2 In(λa1)K ′
n(λa1)] . (4b)
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