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In the context of level set methods, the level set equation is modified by embedding 
a source term. The exact expression of this term is such that the eikonal equation 
is automatically satisfied, and also, this term is zero on the interface. Theoretically, it 
renders the reinitialization of level sets unnecessary, similarly to the extension velocity 
method. The exact expression of the source term makes also possible the derivation of 
its local approximate forms, of zero-, first- and higher-order accuracy. Application of those 
forms simplifies the realization of level set methods in comparison with the extension 
velocity method, but requires the return to the reinitialization procedure. Nevertheless, the 
advantage of local approximate forms of the proposed source term is that the number 
of reinitializations can be significantly reduced in comparison with the standard level 
set equation with the reinitialization procedure. Furthermore, with increasing the order 
of accuracy of approximation less number of reinitializations is needed. This leads to 
improvement of the interface resolution. The paper describes the new approach and an 
assessment of its performance in different test cases.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In a variety of physical processes the discontinuity in physical properties is mimicked by the evolution of a fluid-interface. 
Examples include immiscible gas–liquid flows, premixed flames, solidification and melting phenomena, etc. In these exam-
ples, the level set methods are often used for simulation of the moving interface. The most basic description of these 
methods, pioneered by Osher and Sethian in [1], can be found in books [2–4]. Essential is that the interface is embedded 
as the zero level set Σ = {x : G(x, t) = 0} of a continuous level set function G(x, t) evolving according to the following 
field-equation:

∂G

∂t
+ u · ∇G = 0. (1)

This equation, with a given initial distribution G(x, t)|t=0 = G0(x), is often referred to as the level set equation, or the 
G-equation. Here u(x, t) is the flow velocity field. Geometric quantities such as the unit vector n, normal to the interface, 
and the interface curvature κ can be determined from the level set field:

* Corresponding author.
E-mail address: mikhael.gorokhovski@ec-lyon.fr (M. Gorokhovski).

http://dx.doi.org/10.1016/j.jcp.2014.08.018
0021-9991/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcp.2014.08.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:mikhael.gorokhovski@ec-lyon.fr
http://dx.doi.org/10.1016/j.jcp.2014.08.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2014.08.018&domain=pdf


2 V. Sabelnikov et al. / Journal of Computational Physics 278 (2014) 1–30

n = ∇G

|∇G| , κ = ∇ · n. (2)

According to definition (2), the equivalent form of Eq. (1) can be written in terms of the normal velocity F = u · n:

∂G

∂t
+ F |∇G| = 0. (3)

The well-known problem addressed to Eq. (1) is this: if the flow velocity is not constant, the level set function G may 
become strongly distorted, and then the numerical integration of (1) suffers from loss of accuracy in the prediction of the 
interface. Consequently, the relevant geometric quantities (2) are poorly computed. In level set methods this problem is 
remedied by the reinitialization procedure1 [5], i.e. by reconstructing the level set function such that it satisfies the eikonal 
equation:

|∇G| = 1, G|x∈Σ = 0. (4)

There are a number of numerical methods for reinitialization (or redistancing) of a given level set function to the corre-
sponding signed distance function. The most popular methods fast marching methods [6–8], fast sweeping methods [9,10]
and reinitialization methods [11–18] based on PDEs (partial differential equation). In this work, we address to the PDE-
based reinitialization method, referred to as the reinitialization procedure. It relies on the evolutional form of Eq. (4) through 
an iterative process:

∂G

∂τ
= sgn(G̃)

(
1 − |∇G|), G(x, τ = 0) = G̃. (5)

The process runs numerically till an arbitrary level set function G̃ becomes the signed distance function. In practice, G̃ es-
timates the solution to Eq. (1) at the given time. This estimate is not a signed distance function from the zero level set. 
Analytically, it is stated that in the limit τ → ∞, the solution of Eq. (5) tends to the unique viscosity solution of Eq. (4)
without perturbation of the zero level set. However, practical computations have shown two difficulties concerning the 
reinitialization procedure given by Eq. (5).

(i) Perturbation of the front. In [12], it has been observed that after several iterations in discretized form of Eq. (5), the 
zero level set may move towards the nearest grid points which does not lie directly on the interface. The explanation of this 
effect [12] relies on the fact that in upwind methods, employed usually for integration of Eq. (5), the upwind differencing 
is performed according to the direction of the characteristics. This means that applying upwind differencing on grid points 
across the interface, the upwind property is violated, due to opposite directions of the characteristics propagation on the 
exterior and the interior. To overcome this drawback, the upwind fix across the zero level set was proposed in [12]; thereby 
the interface motion was effectively reduced. This approach was further developed in [13] for schemes of higher-order. In 
order to preserve area/volume during the level set reinitializations, a constraint was introduced in [14], in the form of the 
source term in Eq. (5). In [15,16], Eq. (5) was modified on the basis of the least-squares method allowing the displacement 
of the zero level set to be explicitly minimized within the reinitialization.

(ii) The convergence problem was addressed in [17]. For design of a stable scheme for (5), the sign function is usually 
smeared-out numerically. Such an approximation slows down the propagation speed of information from the zero level 
set. Since this information propagates along the normal direction, i.e. along the characteristics of the eikonal equation, the 
reduced speed of its propagation (less than one) requires, for the convergence, an increased number of iterations, much 
more than expected one for (5) with the unit propagation speed. Iterations become especially costly in the vicinity of the 
interface, where the smoothed sign function has intermediate values between −1 and 1.

In alternative to solving different forms of the reinitialization equation (5), there are other techniques, in which the 
reinitialization procedure is avoided, while the sign distance solution is preserved. As noted in [19] for example, one can 
obtain the signed distance as a solution to the evolutional equation if to correct properly the velocity field in Eq. (1), without 
changing the velocity on the interface. This idea was used in [20] for the formulation of the extension velocity method. In 
the extension velocity method, the main challenge is to introduce a new velocity field F ext which coincides with the flow 
velocity field on the interface and is constant in the normal to the interface direction. Namely, F ext is governed by the 
following boundary value problem:

∇ F ext · ∇G = 0 and F ext|∑ = F |∑ = (u · n)|∑. (6)

Then the G-equation written in terms of the normal velocity, i.e. Eq. (3), is solved with F ext , instead of F . Similar approach 
was proposed in [21]. The difference between the approach from [21] and the extension velocity method [20] concerns 
the way of computing of F ext . However, it has been mentioned in [22] that in complex flows, the computational cost of 
determining the extension velocity is high, and in some cases, the time-marching method for integration of Eq. (6) can lead 
to unexpected behavior. Further development of the extension velocity method was proposed and assessed in [22].

1 Appendix A contains demonstration of how the reinitialization procedure works. A simple flow produced by one-dimensional strain is selected to 
illustrate clearly the key point of this procedure. Namely, it consists in the use of two G-fields at successive time steps: (i) the first field, with |∇ G̃| > 1 is 
used to find the position of zero level set at current time; (ii) the second field, with |∇Grein| = 1, is constructed from the knowledge of this position.
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