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A positivity-preserving discontinuous Galerkin (DG) scheme [42] is used to solve the 
Extended Magnetohydrodynamics (XMHD) model, which is a two-fluid model expressed 
with a center-of-mass formulation. We prove that DG scheme with a positivity-preserving 
limiter is stable for the system governed by the XMHD model or the resistive MHD model. 
We use the relaxation system formulation [28] for describing the XMHD model, and solve 
the equations using a split level implicit–explicit time advance scheme, stepping over the 
time step constraint imposed by the stiff source terms. The magnetic field is represented 
in an exact locally divergence-free form of DG [23], which greatly improves the accuracy 
and stability of MHD simulations. As presently constructed, the method is able to handle 
a wide range of density variations, solve XMHD model on MHD time scales, and provide 
greatly improved accuracy over a Finite Volume implementation of the same model.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

In High Energy Density (HED) plasma systems, we usually must deal with a wide dynamic range of current carrying 
densities. When density is so low that the scale lengths are comparable to ion inertial length, the single fluid model would
break down. For these problems two-fluid physics is essential, but the applicability of existing numerical methods [6,16,17,
19,25,34] in this plasma regime is still limited. In this paper we develop a discontinuous Galerkin (DG) method to solve 
an extended Magnetohydrodynamics (XMHD) model based on a relaxation formulation, and will demonstrate that this 
numerical scheme has high accuracy, is computationally efficient, and can handle the large dynamic density range for HED 
plasmas.

DG schemes are widely used in the hyperbolic algorithms community, since the method can handle complex geometries, 
has an arbitrary order of accuracy, and is efficient in parallel calculations [9–12,31]. In addition, DG has further advantages 
for HED plasmas, because the density range is very wide, one often faces a problem where the initial density profile 
is nearly a δ-singularity (e.g. a pinched-down wire). Such problems are difficult to approximate numerically, and most 
previous techniques are based on the modification of the singularities with smooth kernels in some narrow region (e.g. 
[37,40] and the references therein), and hence smear such singularities. However, DG methods depend on the weak form of 
the equations and can solve such problems without modification, leading to a very accurate result [38]. The main challenge 
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with DG implementations lies in preserving the stability of the system. Near discontinuities, strong oscillations often appear 
that might send the physically positive quantities negative. When this occurs, the numerical simulation may break down. In 
our system, the quantities that should be preserved positive are: density ρ , pressure P , energy E . To ensure these quantities 
satisfy a positivity-preserving property, one could use a Total Variation Diminishing (TVD) scheme; however all TVD schemes 
will degenerate to lower order accuracy at smooth extrema [41]. In [42], a positivity-preserving high order DG scheme is 
developed for solving the compressible Euler equations, and in [39], the authors demonstrated the L1-stability of such a 
scheme. This scheme has been applied on solving the ideal magnetohydrodynamic (MHD) equations [3,7]. In this paper, 
we will demonstrate that the positivity-preserving DG scheme can establish a positivity-preserving property for a system 
described by an XMHD model or a resistive MHD model, thus preserving the stability of the system.

For solving the XMHD model, we use the relaxation algorithm proposed in [28] to solve the combination of generalized 
Ohm’s law (GOL) and the Maxwell–Ampére law for the electric field. The relaxation method is essentially a semi-implicit 
time differencing proven to converge to the solution of the algebraic equations that are the stiff source terms set equal to 
zero. In the case of XMHD this means the solution converges to GOL in which the electron inertial terms are neglected and 
to the Maxwell equation in which the displacement current term is neglected (Ampére’s Law). Using this algorithm, one can 
avoid the constraint imposed by the under-resolved stiff source terms to step over electron plasma and cyclotron frequencies, 
which are often under-resolved in the characteristic regime, and thereby allow one to solve the XMHD equations on MHD 
time scales. In this algorithm, the Hall term is locally implicit avoiding the substantial effort in solving a large linear system. 
Furthermore, with XMHD model, in low-density region, the current is suppressed by both Hall and electron inertial terms, 
one is able to use the unmodified Spitzer resistivity, which makes the plasma–vacuum transition automatic and physical. 
This algorithm has been implemented into an XMHD code called PERSEUS with a second-order finite volume (FV) scheme. 
Because of the extended stencil, FV is often too diffusive to characterize small-scale fluid instabilities and to resolve the 
local details of a shock structure without a large number of cells. On the other hand, DG scheme is more compact in the 
sense that every cell is treated independently, and the solution is localized within a cell. This leads to a reduced numerical 
diffusion. In this paper, we compare the performance of a DG formulation XMHD code to that of an FV formulation, and 
will demonstrate through numerical tests that DG has a significant advantage over the same order of FV in both memory 
and CPU time. Additionally we compare selected results with those found from the MHD model computed using the same 
algorithm. This comparison demonstrates the viability of the method for solving XMHD problems as well as to point out 
important deficiencies in MHD.

This paper is organized as follows. In Section 2 we introduce the XMHD model and the relaxation algorithm. In Section 3, 
we construct the DG scheme used in this paper, and demonstrate that a positivity-preserving limiter can preserve the 
positivity-preserving property in a system governed by an XMHD model or a resistive MHD model, we will also give a brief 
introduction on the implementation of our algorithm. In Section 4, we present the results of numerical tests, in some of 
the tests, we do a comparison with FV, to show that DG is more accurate and more efficient than an FV implementation. 
We also give examples of the method applied to fundamental plasma physics problems and provide a comparison with the 
MHD model for the same problems. Concluding remarks are provided in Section 5.

2. XMHD model

2.1. Governing equations

In the study of HED plasmas, we are often in a regime where the ion inertial length or even the electron inertial length 
are resolved by the cell dimensions. When this occurs, standard MHD does not accurately describe the system, and a more 
generalized model is called for. The two-fluid model expressed with a center-of-mass formulation, which is the XMHD 
model, covers most of the physics occurring in this regime. The primary exception being due to space-charge effects, which 
is neglected in the quasineutral XMHD model. The XMHD model is given by:
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