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A time-domain numerical modeling of transversely isotropic Biot poroelastic waves is 
proposed in two dimensions. The viscous dissipation occurring in the pores is described 
using the dynamic permeability model developed by Johnson–Koplik–Dashen (JKD). Some 
of the coefficients in the Biot-JKD model are proportional to the square root of the 
frequency. In the time-domain, these coefficients introduce shifted fractional derivatives 
of order 1/2, involving a convolution product. Based on a diffusive representation, the 
convolution kernel is replaced by a finite number of memory variables that satisfy local-
in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation) 
model. The properties of both the Biot-JKD and the Biot-DA models are analyzed: 
hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive 
approximation, two approaches are analyzed: Gaussian quadratures and optimization 
methods in the frequency range of interest. The nonlinear optimization is shown to be 
the better way of determination. A splitting strategy is then applied to approximate 
numerically the Biot-DA equations. The propagative part is discretized using a fourth-
order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. 
An immersed interface method is implemented to take into account heterogeneous 
media on a Cartesian grid and to discretize the jump conditions at interfaces. Numerical 
experiments are presented. Comparisons with analytical solutions show the efficiency 
and the accuracy of the approach, and some numerical experiments are performed to 
investigate wave phenomena in complex media, such as multiple scattering across a set of 
random scatterers.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A porous medium consists of a solid matrix saturated with a fluid that circulates freely through the pores [1–3]. Such 
media are involved in many applications, modeling for instance natural rocks, engineering composites [4] and biological 
materials [5]. The most widely used model describing the propagation of mechanical waves in porous media has been pro-
posed by Biot in 1956 [1,6]. It includes two classical waves (one “fast” compressional wave and one shear wave), in addition 
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to a second “slow” compressional wave, which is highly dependent on the saturating fluid. This slow wave was observed 
experimentally in 1980 [7], thus confirming the validity of Biot’s theory.

Two frequency regimes have to be distinguished when dealing with poroelastic waves. In the low-frequency range (LF), 
the flow inside the pores is of Poiseuille type [1]. The viscous effects are then proportional to the relative velocity of the 
motion between the fluid and the solid components. In the high-frequency range (HF), modeling the dissipation is a more 
delicate task. Biot first presented an expression for particular pore geometries [6]. In 1987, Johnson–Koplik–Dashen (JKD) 
published a general expression for the HF dissipation in the case of random pores [8], where the viscous efforts depend 
on the square root of the frequency. No particular difficulties are raised by the HF regime if the solution is computed in 
the space-frequency domain [9,10]. On the contrary, the computation of HF waves in the space–time domain is much more 
challenging. Time fractional derivatives are then introduced, involving convolution products [11]. The past of the solution 
must be stored, which dramatically increases the computational cost of the simulations.

The present work proposes an efficient numerical model to simulate the transient poroelastic waves in the full frequency 
range of Biot’s model. In the high-frequency range, only two numerical approaches have been proposed in the literature to 
integrate the Biot-JKD equations directly in the time-domain. The first approach consists in a straightforward discretization 
of the fractional derivatives defined by a convolution product in time [12]. In the example given in [12], the solution is 
stored over 20 time steps. The second approach is based on the diffusive representation of the fractional derivative [13]. 
The convolution product is replaced by a continuum of memory variables satisfying local differential equations [14]. This 
continuum is then discretized using Gaussian quadrature formulae [15–17], resulting in the Biot-DA (diffusive approxima-
tion) model. In the example proposed in [13], 25 memory variables are used, which is equivalent, in terms of memory 
requirement, to storing 25 time steps. The idea of using memory variables to avoid convolution products is close to the 
strategy commonly used in viscoelasticity [18].

The concern of realism leads us also to tackle with anisotropic porous media. Transverse isotropy is commonly used in 
practice. It is often induced by Backus averaging, which replaces isotropic layers much thinner than the wavelength by a 
homogeneous isotropic transverse medium [19]. To our knowledge, the earliest numerical work combining low-frequency 
Biot’s model and transverse isotropy is based on an operator splitting in conjunction with a Fourier pseudospectral method 
[20]. Recently, a Cartesian-grid finite volume method has been developed [21]. One of the first works combining anisotropic
media and high-frequency range is proposed in [22]. However, the diffusive approximation proposed in the latter article 
has three limitations. Firstly, the quadrature formulae make the convergence towards the original fractional operator very 
slow. Secondly, in the case of low frequencies, the Biot-DA model does not converge towards the Biot-LF model. Lastly, the 
number of memory variables required for a given accuracy is not specified.

The present work extends and improves our previous contributions about the modeling of poroelastic waves. In [23], 
we addressed 1D equations in the low-frequency range, introducing a splitting of the PDE. 2D generalizations for isotropic 
media required to implement space–time mesh refinement [24,25]. Diffusive approximation of the fractional derivatives in 
the high-frequency range was introduced in [26] and generalized in 2D in [27]. Compared with [27], the originality of the 
present paper is threefold:

1. incorporation of anisotropy. The numerical scheme and the discretization of the interfaces need to be largely modified 
accordingly;

2. new procedure to determine the coefficients of the diffusive approximation. In [26,27], we used a classical least-squares 
optimization. It is much more accurate than the Gauss–Laguerre technique proposed in [13]. But in counterpart, some 
coefficients are negative, which prevents to conclude about the well-posedness of the diffusive model. Here, we fix this 
problem by using optimization with constraint of positivity, based on Shor’s algorithm. Moreover, the accuracy of this 
new method is largely improved compared with the linear optimization;

3. theoretical analysis. A new result about the eigenvalues of the diffusion matrix is introduced and the energy analysis is 
extended to anisotropy.

This article is organized as follows. The original Biot-JKD model is outlined in Section 2 and the diffusive representation 
of fractional derivatives is described. The energy decrease is proven, and a dispersion analysis is done. In Section 3, an 
approximation of the diffusive model is presented, leading to the Biot-DA system. The properties of this system are also 
analyzed: energy, hyperbolicity and dispersion. Determination of the quadrature coefficients involved in the Biot-DA model 
are investigated in Section 3.4. Gaussian quadrature formulae and optimization methods are successively proposed and 
compared, the latter being finally preferred. The numerical modeling of the Biot-DA system is addressed in Section 4, where 
the equations of evolution are split into two parts: the propagative part is discretized using a fourth-order finite-difference 
scheme, and the diffusive part is solved exactly. An immersed interface method is implemented to account for the jump 
conditions and for the geometry of the interfaces on a Cartesian grid when dealing with heterogeneous media. Numerous 
numerical experiments are presented in Section 5, validating the method developed in this paper. In Section 6, a conclusion 
is drawn and some future lines of research are suggested.
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