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In this paper we extend the spectrally accurate algorithms developed by Ganesh et al. 
in [2,3] to the numerical solution of a modified combined-field integral equation (M-CFIE) 
for electromagnetic wave scattering in three dimensions.
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1. Introduction

We are concerned with the numerical solution of the scattering problem of time-harmonic electromagnetic waves by a 
three-dimensional perfectly conducting obstacle. We assume that the perfect conductor is represented by a bounded domain 
Ω in R3 with a simply connected closed boundary Γ of class C 1 at least. Let Ωc denote the exterior domain R3\Ω
and n denote the outer unit normal vector to the boundary Γ . Let κ denote the exterior wavenumber. The propagation 
of electromagnetic waves is governed by the system of Maxwell equations and the time-harmonic Maxwell system can 
be reduced to the second order equation for the electric field only. In this case the scattering problem is formulated as 
follows [1,6]: Given an incident electric wave E inc which is assumed to solve the homogeneous second order Maxwell 
equation curl curl E inc − κ2 E inc = 0 in a neighborhood of the boundary Γ , find the electric scattered wave Es solution to 
the Maxwell equation curl curl Es − κ2 Es = 0 in Ωc and satisfying the boundary condition n × (Es + E inc) = 0 on Γ . In 
addition the scattered field Es has to satisfy the Silver–Müller radiation condition: | curl Es(x) × x − iκ |x|Es(x)| |x|→+∞−→ 0. 
This scattering problem can be reduced in several different ways to a uniquely solvable modified combined-field boundary 
integral equation (M-CFIE) for all positive real values of the exterior wave number [1,7]. In Section 2 we review the standard 
indirect approaches.

Efficient numerical solution of such scattering problems is of practical interest for various industrial applications, espe-
cially in the area of inverse obstacle scattering. Among all the existing numerical methods to solve integral equations, we 
focus here on spectral methods. Ganesh and Hawkins already proposed in [3], and references therein, several spectrally 
accurate methods to implement the magnetic field integral equation (MFIE). It consists in transporting the MFIE on the unit 
sphere S2 via a normal transformation acting from the tangent plane to the boundary Γ onto the tangent plane to the 
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unit sphere, so that one only has to seek a solution in terms of tangential vector spherical harmonics. To treat numerically 
the M-CFIE, we need to implement the hypersingular part of the electromagnetic single layer boundary integral operator. 
This requires a transformation that moves the nullspace of the surface divergence on Γ onto the nullspace of the surface 
divergence on S2. The implementation of a hypersingular integral can then be avoided by involving integration by parts 
and surface derivatives of the vector spherical harmonics that can be computed analytically. Such a transformation is well 
known as the Piola transform. In Section 3 we give the reformulation of the integral equation in spherical coordinates, based 
on this approach. We explain in Section 4 how this equation can be implemented by using a combination of the high order 
spectral algorithm developed in [2] for integral equations arising in acoustic scattering and the one developed in [3] for the 
MFIE. Numerical results in the resonance frequency region for the unit sphere and in the medium frequency region for a 
variety of three-dimensional convex and non-convex smooth obstacles are presented in Section 5 to show the efficiency of 
the method. We obtain convergence rates similar to those reported in Ganesh et al. [2,3].

2. The solution of the perfect conductor problem

We denote by Hs
loc(Ω

c) and Hs(Γ ) the standard (local in the case of the exterior domain) complex valued, Hilbertian 
Sobolev space of order s ∈ R defined on Ωc and Γ respectively (with the convention H0 = L2). Spaces of vector functions 
will be denoted by boldface letters, thus H s = (Hs)3. We use the tangential gradient denoted by ∇Γ , the tangential vector 
curl denoted by curlΓ , the surface divergence denoted by divΓ and the surface scalar curl denoted by curlΓ . For their 

definitions we refer to [1,4,6] and references therein. For s ∈R, we introduce the Hilbert space H
− 1

2
div (Γ ) = { j ∈ H− 1

2 (Γ ); j ·
n = 0 and divΓ j ∈ H− 1

2 (Γ )}, endowed with the norm ‖ · ‖H s
div(Γ ) = (‖ · ‖2

H s(Γ )
+ ‖ divΓ · ‖2

Hs(Γ ))
1/2. We set H loc(curl,Ωc) =

{v ∈ L2
loc(Ω

c) : curl v ∈ L2
loc(Ω

c)} and we define H loc(curl curl,Ωc) in the same way. Recall that for a vector function u ∈
H loc(curl, Ω) ∩ H loc(curl curl, Ω), the traces n × u|Γ and n × curl u|Γ are in H

− 1
2

div (Γ ). The dual space of H
− 1

2
div (Γ ) for the L2

duality product is H
− 1

2
curl(Γ ) and the exterior product with the normal vector defines a bicontinuous isomorphism between 

H
− 1

2
div (Γ ) and H

− 1
2

curl(Γ ).

For any κ > 0, let Φ(κ, z) = eiκ |z|
4π |z| be the fundamental solution of the Helmholtz equation �u +κ2u = 0. Here we consider 

the modified combined-field integral equation (M-CFIE) method based on the layer ansatz [1, Section 6.4]:

E s(x) =
∫
Γ

curlx{Φ(κ,x − y) j(y)
}

ds(y) + iη

∫
Γ

1

κ
curl curlx{Φ(κ,x − y)Λ j(y)

}
ds(y), (2.1)

where Λ is a bounded operator from H
− 1

2
div (Γ ) to itself, self-adjoint and elliptic for the bilinear form

( j,m) �→
∫
Γ

j · (n × m)ds (2.2)

and η is a non vanishing real constant.

We assume f = −n × E inc ∈ H
− 1

2
div (Γ ). By the jump relations, the field E s ∈ H loc(curl,Ωc) ∩ H loc(curl curl,Ωc) given 

by (2.1) solves the perfect conductor problem if the density j solves the following integral equation [1, Eq. (6.49)]

(I + Mκ + iηCκΛ) j = 2 f on Γ. (2.3)

Here the single layer potential Cκ and the double layer potential Mκ are defined by [1, Eqs. (6.30) and (6.40)]

Mκ j(x) =
∫
Γ

n(x) × curlx{2Φ(κ,x − y) j(y)
}

ds(y),

Cκ j(x) = 1

κ

∫
Γ

n(x) × curl curlx{2Φ(κ,x − y) j(y)
}

ds(y)

= κn(x) ×
∫
Γ

2Φ(κ,x − y) j(y)ds(y) − 1

κ
curlΓ

∫
Γ

2Φ(κ,x − y)divΓ j(y)ds(y).

The operator Mκ : H
− 1

2
div (Γ ) → H

− 1
2

div (Γ ) is compact and the operator Cκ has a hypersingular kernel but is bounded on 

H
− 1

2
div (Γ ). The operator Λ is then chosen such that (I + Mκ + iηCκΛ) is a Fredholm operator of index zero. Kress first 

proposed in [1] a compact regularization Λ j = n × S2
0 j where S0 is the single layer boundary integral operator of the 

Laplace equation, thus (I + Mκ + iηCκΛ) is a Fredholm operator of the second kind. One can also use the elliptic and 

invertible operator which is a variant of the operator Cκ [7] defined on H
− 1

2
div (Γ ) by Λ j = n × S0 j + curlΓ S0 divΓ j.
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