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Multicomponent polymer flooding used in enhanced oil recovery is governed by a system 
of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux 
functions need not be monotone and hence designing Godunov type upwind schemes is 
difficult and computationally expensive. To overcome this difficulty, we use the basic idea
of discontinuous flux to reduce the coupled system into an uncoupled system of scalar 
conservation laws with discontinuous coefficients. For these scalar equations we use the 
DFLU flux developed in [5] to construct a second order scheme. The scheme is shown to 
satisfy a maximum principle and the performance of the scheme is shown on both one 
and two dimensional test problems.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The numerical simulation of two phase flow in porous media plays a key role in many engineering applications such 
as oil-recovery [6,7,33], environmental remediation [21] and water management in polymer electrolyte fuels cells [31]. 
Enhanced oil recovery involves the pumping of water into an oil reservoir to displace the residual oil towards a recovery 
well. In this paper we consider the multi-dimensional simulation of two phase (water and oil) flow in a heterogeneous 
porous medium arising in enhanced oil-recovery process. We have assumed that m chemical components are dissolved in 
the aqueous phase. These components could be different polymers that have different influence on the fluid properties like 
viscosity. The increased viscosity of the aqueous phase reduces fingering instabilities and hence improves the efficiency of 
oil recovery.

For simplicity we take the spatial domain Ω = [0, 1] × [0, 1] as the two dimensional reservoir. Let s ∈ [0, 1] denote 
the saturation of aqueous phase and c = (c1, c2, ..., cm) ∈ [0, 1]m denote the concentration of the polymers dissolved in the 
aqueous phase. Then in the absence of capillary pressure the governing equations form a system of (m + 1) hyperbolic 
conservation laws [24,25] given by

st + ∇ · F (s, c1, c2, ..., cm, x) = 0(
scl + al(cl)

)
t + ∇ · (cl F (s, c1, c2, ..., cm, x)

)= 0, l = 1,2, ...,m (1.1)

where (x, t) ∈ Ω × (0, ∞), al : [0, 1] → R are given smooth functions modeling the adsorption process on the porous 
medium, and the flux F : [0, 1] × [0, 1]m × Ω → R

2 is given by F = (F1, F2) where
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F1(s, c, x) = v1(x) f (s, c), f (s, c) = λw(s, c)

λw(s, c) + λo(s)
, (1.2)

F2(s, c, x) = [
v2(x) − (ρw − ρo)gλo(s, c)K (x)

]
f (s, c). (1.3)

Here ρw , ρo are the densities of water and oil respectively and g is the acceleration due to gravity. The quantities λw and 
λo are the mobilities of the water and oil phase respectively and v = (v1, v2) ∈ R

2 is the total velocity given by the Darcy 
law [16]

v = −
(

(λw + λo)K (x)
∂ p

∂x1
, (λw + λo)K (x)

∂ p

∂x2
+ (λwρw + λoρo)g K (x)

)
(1.4)

where p : Ω → R is the pressure and K : Ω → [0, ∞) is the permeability of the rock which can be discontinuous in x. 
A commonly used model for the mobilities is given by

λw(s, c) = s2

μw(c)
, λo(s) = (1 − s)2

μo
(1.5)

where μw , μo are the viscosities of water and oil respectively and μw = μw(c) which is increasing in each of its variable ci .
If we assume incompressibility of the flow and if there are no sources, then the velocity is governed by

∇ · v = 0 in Ω (1.6)

with some suitable boundary conditions for pressure on ∂Ω . For instance in the inlet part of the boundary, water is pumped 
in at high pressure p = pI while a lower pressure p = pO is maintained on outlet, see Fig. 13. On the remaining part of the 
boundary, the normal velocity is set to zero, which gives a Neumann boundary condition on pressure. Eqs. (1.1)–(1.6) form 
a system of coupled algebraic–differential equations and no time derivative is involved in Eq. (1.6).

In the absence of polymer flooding or equivalently if the flux function is independent of c, Eq. (1.1) reduces to a scalar 
equation. This situation has been studied in [28] by using a fast marching method and in [27] by using semi-Godunov 
scheme. In [17] two-phase flow problems are studied by using gradient schemes. It is well known that fingering instabilities 
develop when less viscous aqueous phase displaces the more viscous oil phase [13]. Due to the fingering process, water can 
reach the recovery well before all the oil has been displaced which leads to inefficient recovery process. With the addition 
of some polymer, viscosity of water increases and the fingering effects reduces which leads to an efficient oil-recovery. In 
the presence of the polymer concentration c, the system of Eqs. (1.1) becomes coupled and non-strictly hyperbolic. When 
the concentration c is smooth function of space, existence and uniqueness theory is established in [34] but we deal here 
with the case when c need not be smooth. For this system, developing a Godunov type upwind scheme is difficult as it 
needs the exact solution of Riemann problems. The presence of gravity leads to non-monotone fluxes; this combined with 
heterogeneity of the porous medium makes the exact Riemann solution to be computationally expensive.

By using the idea of discontinuous flux we reduce the system to a set of uncoupled scalar equations. These scalar 
equations have fluxes which are discontinuous in the space variable, for which we develop a Godunov scheme following the 
approach in [3,5]. The resulting scheme is referred to as DFLU scheme. This approach does not require detailed information 
about the eigenstructure of the full system. Also in [27], the idea of discontinuous flux is used to study a coupled system 
arising in three-phase flows in porous media and shown its successfulness. Scalar conservation laws with discontinuous 
flux have been studied by many authors [2,4,10,9,11,14,15,18,22,26,30]. In particular, a Godunov type finite volume scheme 
is proposed in [3] and convergence to a proper entropy solution is proved, provided the flux functions satisfies certain 
conditions like in Section 2. The DFLU scheme for system of equations in the one-dimensional case is introduced in [5]. In 
the present work we are extending DFLU to a multi dimensional case including the effect of gravity, spatial heterogeneity 
and arbitrary number of polymer components and develop a second order scheme. We compare numerical results with 
Godunov scheme which is obtained by solving exact Riemann problem and Upstream mobility (UM) scheme which is an 
ad-hoc scheme used by petroleum engineers. We point out that, in general UM flux may lead to a wrong solution, see [32].

The paper is organized as follows. In Section 2 we discuss solution to the Riemann problem and explain the construction 
of first and second order DFLU scheme. The second order scheme is constructed by using a reconstruction process in space 
variable together with slope limiter and a strong stability preserving Runge–Kutta scheme in the time variable [20]. In 
Section 3 numerical results for one dimensional case are presented. In Section 4 two dimensional problem is introduced 
and the one dimensional scheme is extended to two dimensions. The resulting schemes are shown to respect a maximum 
principle. In Section 5 two dimensional numerical results are shown for various test cases.

2. One dimensional problem

The system of (m + 1) equations in one-dimension in the presence of gravity is given by

st + ∂

∂x
F (s, c1, c2, ..., cm, x) = 0

(
scl + al(cl)

)
t + ∂

∂x
cl F (s, c1, c2, ..., cm, x) = 0, l = 1,2, ...,m (2.1)
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