
Journal of Computational Physics 270 (2014) 459–477

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Exact Jacobians for implicit Navier–Stokes simulations
of equilibrium real gas flows

Enrico Rinaldi a, Rene Pecnik a,∗, Piero Colonna b

a Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
b Aerodynamics, Wind Energy, Flight Performance and Propulsion Department, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft,
The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 December 2013
Received in revised form 17 March 2014
Accepted 28 March 2014
Available online 12 April 2014

Keywords:
Real gas flows
Dense gas dynamics
Approximate Riemann solver
Implicit scheme Jacobian
Compressible Navier–Stokes
Look-up table interpolation

This paper documents the extension of several widespread flux schemes, used in finite-
volume Navier–Stokes solvers, for the simulation of flows whose fluid properties must be
estimated with complex thermophysical models. Exact Jacobian matrices for the convective
fluxes are derived with no assumption on the fluid equations of state model for Liou’s
AUSM+, Toro et al.’s HLLC, and Kurganov and Tadmor’s central scheme. The Jacobians of
the diffusive fluxes are expressed using the formulation proposed by Pulliam and Steger,
resulting in additional terms due to the viscosity and thermal conductivity variations. An
efficient look-up table approach is thoroughly studied and proposed as an alternative to
the direct solution of the equation of state model for the fluid thermophysical property
evaluation. The newly introduced schemes are validated and tested in terms of accuracy
and convergence rate on a series of one- and two-dimensional test cases. The results
indicate that the Jacobian must be based on the same flux formulation as the one used
on the right-hand side of the implicit equation to achieve numerically converged solutions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Nowadays, computational fluid dynamics (CFD) is a widely used tool for the analysis and design of many engineering
applications, as well as for the study of the physics of complex flows. Most of the numerical techniques applicable to
compressible flows developed throughout the years have been derived under the assumption that the fluid complies with
the ideal gas model. However, several assumptions (e.g., constant specific heats, ideal gas law) do not hold if a fluid state
is close to its vapor–liquid critical point or at high temperatures and low pressures. There is a wide variety of flows for
which real gas effects are predominant and must be considered, some of them being hypersonic flows, reacting flows, and
supercritical flows. It is therefore of paramount importance to include a complex thermophysical description of the fluid
when such numerical simulations are to be performed.

The topic of adapting standard numerical techniques to be applicable for real gas flows using the finite volume Godunov
method [1] has been proposed in the 1980s by several authors. Colella and Glaz [2] were among the first to study the
numerical solution of the Riemann problem of gasdynamics for a real fluid. Further contributions are the pioneering work
of Glaister [3–6], Montagné and co-workers [7,8], and Gallouët and co-workers [9,10]. They extended Roe’s approximate
Riemann solver [11], and some variants of the original scheme, with a complex equations of state. A generalization of the
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Roe linearization for high temperature reacting flows was introduced by Mottura et al. [12]. Other splitting schemes such
as Steger–Warming’s [13], van Leer’s [14], Osher’s [15], and Liou’s AUSM+ [16] were considered by Liou et al. [17], Suresh
and Liou [18], and Edwards and co-workers [19,20]. Central difference schemes were studied by Saurel et al. [21] and later
by Merkle et al. [22]. Recently, the increasing interest in transcritical fluids as the working medium for energy conversion
applications (e.g., organic Rankine cycle and supercritical CO2 Brayton cycle turbines) drove the scientific community to
further develop numerical schemes for the simulation of complex three-dimensional flows of real gases, see for example
Colonna and co-workers [23–25], Cinnella and co-workers [26–28], Boncinelli et al. [29], and Cirri et al. [30].

The aim of this paper is to provide a complete methodology for incorporating complex thermophysical models in several
well established inviscid and viscous flux schemes for the Navier–Stokes equations. The inviscid flux schemes considered
are the AUSM+ scheme introduced by Liou [16], the HLLC scheme of Toro et al. [31], and the central scheme of Kurganov
and Tadmor (KT) [32]. No assumption on the equation of state model is assumed. The description of the Roe solver is
included for the purpose of comparison and its implementation is taken from Colonna and Rebay [23]. The diffusive fluxes
and their implicit formulations are discretized following Pulliam and Steger [33]. Additional terms in the Jacobian caused
by temperature-dependent viscosity and thermal conductivity are highlighted and discussed. Furthermore, a look-up table
(LUT) interpolation is proposed and comprehensively evaluated. A detailed assessment of the LUT accuracy, consistency, and
computational efficiency with respect to direct solution of the equation of state model is given to provide a solid basis for
its use.

The focus of the numerical experiments presented is on the dense gas region, therefore high temperature phenomena
such as dissociation are excluded from the analysis. Furthermore, only single phase flows are considered in the numerical
modeling. However, the methods proposed in this work can be applied to model two-phase vapor–liquid flows when the
assumption of the homogeneous mixture can be made, see for example Refs. [34,35].

The paper is structured as follows. Section 2 describes the analysis of the LUT interpolation method and the evaluation of
its performance compared to the direct calculation of fluid properties using EoS models. The formulation of the convective
and diffusive numerical fluxes and the expression of the Jacobians for both is provided in Sections 3 and 4. A series of one-
and two-dimensional test cases is presented in Section 5 and convergence histories are also reported. Finally, conclusions
are drawn in Section 6. The appendices give the generic expressions of the pressure derivatives needed for the fluxes and
the Jacobians (Appendix A), and the strategy adopted to obtain the exact solution of the Riemann problem of gasdynamics
for a real gas (Appendix B).

2. Look-up tables for fluid property evaluations

The main limitation of CFD simulations for the analysis of fluids governed by complex thermodynamics is the compu-
tational effort required for their thermophysical property evaluation. This issue can be the bottle-neck of the use of real
gas flow simulations within the framework of uncertainty quantification or numerical optimization. If real gas equations of
state models are adopted, various levels of approximation are possible, whereby high accuracy implies large computational
cost. In order to reduce the latter an approximate property evaluation must be considered instead of a direct solution of the
equation of state. A LUT interpolation provides the best features in terms of efficiency, simplicity, and flexibility. A grid is
generated over a range for two independent thermodynamic variables (e.g., temperature and density), and all the thermo-
physical properties of interest are stored in its nodes. The table can be accessed specifying any pair of properties, and the
cell identification can be easily done with standard search algorithms. If the tabulated region encompasses the vapor–liquid
equilibrium (VLE) region, we split the grid into two sub-grids, one for the single phase and one for the VLE region. This is
done because of the discontinuity across the saturation lines of thermophysical properties such as pressure derivatives and
the speed of sound. The accuracy, consistency, and computational cost of table interpolation are analyzed in the following
sections.

2.1. Accuracy

The comparison of the results of three table interpolation schemes is described hereafter, namely the bilinear, the 3rd
order Lagrange polynomial, and the least-squares gradient interpolation schemes. The accuracy of the property interpola-
tion is assessed in the supercritical region of carbon dioxide CO2 (similar results can be obtained with different fluids),
where several thermophysical properties show a nonlinear behavior, e.g. density, specific heats, thermal conductivity, and
viscosity. Interpolated values for 40,000 random input states are compared with the values obtained from the solution of
the thermodynamic model, namely the multiparameter EoS for technical applications of Span and Wagner type [36–38].
The thermodynamic model is expressed in terms of the reduced Helmholtz free energy as a function of the reduced den-
sity and of the inverse of the reduced temperature. The model parameters (12 in total) are optimized fitting a large set of
high accuracy experimental data. The average relative interpolation error is shown in Fig. 1 as a function of the number of
discretization nodes for the single edge of the table. The convergence rate for the three schemes is not affected by the dif-
ferent choice of input variables. As expected, the polynomial interpolation shows the best accuracy and convergence. Similar
results and trends are obtained if values calculated in other thermodynamic regions are compared. It is worth mentioning
that a limited number of discretization nodes (around 100 for each dimension in the presented case) leads to a level of
accuracy acceptable for many practical applications.
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