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Simulation of the long time behavior of systems requires more than just numerical stability
to return dependable results – it must preserve the underlying geometric structure of
the continuous equations. Symplectic integrators are the most common form of geometric
integrator, and are therefore of interest in simulating plasmas for many plasma periods,
for example. We present here results on generating symplectic integrators for magnetic
systems, and in particular show that the algorithms due to Boris and Vay are symplectic.

© 2014 Published by Elsevier Inc.

1. Introduction

Symplectic integration [1–5] has become a staple of accelerator physics and astrophysics simulations, as it provides
unconditional stability, if not the short term accuracy of Runge–Kutta type schemes. While numerical solutions for systems
such as magnetized plasmas are not derived directly from Hamiltonian systems, the canonical method due to Boris [6–8]
shows many of the properties of a symplectic integrator.

The primary difficulty in developing symplectic integrators for magnetic systems, as was pointed out by Ruth [1], is the
�p · �A term that leads to implicit forms and which is not separable into an exactly integrable Hamiltonian. Even worse is for
relativistic systems, where no clear expansion parameter for the radical in the Hamiltonian exists. In this case, the kinetic
energy is not even close to separable. This problem does not appear in Lagrangian mechanics, where the vector potential
appears in a q̇ · �A form outside the radical. However, Lagrangian mechanics lacks the canonical transformation formalism
used in deriving symplectic integrators.

To obtain geometric integrators from a Lagrangian formalism, it is best to approach the problem using a discretized action
integral. This method, described in [9] and the citations therein, obtains recursion relations for the qk in configuration space
that conserve the symplectic two-form.

In this paper, we present the formalism necessary to show that the Boris method is a symplectic integrator. An overview
of discrete Lagrangian mechanics based on the work of Marsden and West [9] is first presented. This method is then
applied to Lagrangians with vector potentials, first the nonrelativistic limit, where this is shown to be the Boris update. For
the relativistic dynamics of particles in magnetic fields, we find that the generalization of the Boris update developed by
Vay is symplectic.

2. Discretized Lagrangian mechanics

As discussed by Marsden and West ([9], and citations therein), the Lagrangian action integral may be approximated by
some discretization scheme by
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t∫
0

L
(
q, q̇, t′)dt′ ≈

N−1∑
k=0

LD(qk+1,qk, tk) (1)

where tk = t0 + kh for a time step h. Thus, under this derivation, each LD has the units of action, or [L] × [dt]. Minimizing
this action against variations δqk of the physical trajectory, with δq0 = δqN = 0 to fix the endpoints, gives a variation of the
discrete action

δS D =
N−1∑
k=1

(
∂

∂qk+1
LD(qk+1,qk, tk)δqk+1 + ∂

∂qk
LD(qk+1,qk, tk)δqk

)

+ ∂q0 LD(q0,q1)δq0 + ∂qN LD(qN ,qN−1)δqN = 0 (2)

By shifting the summations to match the indices of the variations, this gives the discrete Euler–Lagrange (DEL) equations

D2LD(qk+1,qk) + D1LD(qk,qk−1) = 0 (3)

where Dn is the derivative with respect to the nth variable.
In the continuous Lagrangian limit, the symplectic two-form

ΩL(q, q̇) = ∂2L

∂qi∂q̇ j
dqi ∧ dq j + ∂2L

∂q̇i∂q̇ j
dq̇i ∧ dq j (4)

is conserved under the Euler–Lagrange equations. For the discretized Lagrangian, the tangent bundle TQ does not include
q̇, as the time derivatives do not appear in the Lagrangian. The discretized symplectic two-form that is conserved is given
by

ΩLD (q0,q1) = ∂2L

∂qi
0∂q j

1

dqi
0 ∧ dq j

1 (5)

Because ΩLD = dΘL is an exterior derivative, and d2 = 0, this symplectic two-form is conserved for all solutions of the DEL
equations. This proof is provided in detail in Marsden and West.

Because q̇ is replaced by a finite difference in the discrete Lagrangian, it is important to note that any velocity-like
variables are auxiliary and do not play a role in the underlying geometric structure. This is an important distinction with
Hamiltonian symplectic integrators, where the p and q both play a role in the geometry – the Hamiltonian symplectic two
form explicitly involves the momentum.

As an example of how this yields a symplectic integrator, consider the Lagrangian for a one dimensional particle in a
potential

L(q, q̇, t) = 1

2
q̇2 − V (q, t) (6)

The discretization is non-unique – indeed choosing q �→ (qk+qk+1)/2 yields an implicit integration scheme for general V , while
choosing q �→ qk+1 will yield the explicit integrator below. Because we are interested in explicit integrators, we will consider
the discrete Lagrangian

LD(qk+1,qk) = 1

2

(qk+1 − qk)
2

h
− V

(
qk+1, (k + 1)h

)
h (7)

for a discrete time step t . Applying the DEL equations to this discrete Lagrangian yields

qk+1 − 2qk + qk−1 = − ∂V

∂qk
(qk,kh)h (8)

which we recognize immediately as F = mq̈ in the form of a central differencing. If we define the velocity vector to be

vk+1 = qk+1 − qk

h
(9)

then this yields the first order symplectic integrator

vk+1 = vk − ∂V

∂qk
(qk,kt)h (10)

qk+1 = qk + vk+1h (11)

which has the usual first order leapfrog scheme.
Unlike in Hamiltonian symplectic integration schemes, where the generating function defines the p and q update se-

quences explicitly, we were forced here to introduce the velocity as an auxiliary variable, turning our N second order
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