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In this paper, we present a stable second-order time accurate scheme for solving
fluid–structure interaction problems. The scheme uses so-called Combined Field with
Explicit Interface (CFEI) advancing formulation based on the Arbitrary Lagrangian–Eulerian
approach with finite element procedure. Although loosely-coupled partitioned schemes
are often popular choices for simulating FSI problems, these schemes may suffer from
inherent instability at low structure to fluid density ratios. We show that our second-order
scheme is stable for any mass density ratio and hence is able to handle strong added-mass
effects. Energy-based stability proof relies heavily on the connections among extrapolation
formula, trapezoidal scheme for second-order equation, and backward difference method
for first-order equation.
Numerical accuracy and stability of the scheme is assessed with the aid of two-dimensional
fluid–structure interaction problems of increasing complexity. We confirm second-order
temporal accuracy by numerical experiments on an elastic semi-circular cylinder problem.
We verify the accuracy of coupled solutions with respect to the benchmark solutions
of a cylinder-elastic bar and the Navier–Stokes flow system. To study the stability of
the proposed scheme for strong added-mass effects, we present new results using the
combined field formulation for flexible flapping motion of a thin-membrane structure with
low mass ratio and strong added-mass effects in a uniform axial flow. Using a systematic
series of fluid–structure simulations, a detailed analysis of the coupled response as a
function of mass ratio for the case of very low bending rigidity has been presented.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A stable and efficient numerical technique is essential for the study of nonlinear fluid–structure interaction (FSI) problems
in the fields of aerospace [1,2], bio-engineering [3,4], civil and offshore engineering [5,6]. Two main categories of methods
are available, which differ on their treatment of fluid–structure interface. In the first category, a discrete version of the
interface moves in a non-conformal manner across a fixed mesh in space. This requires an additional property to capture
the interface such as a level set function [7], an immersed structure [4,8], a Lagrange multiplier, fictitious domains or ghost
fluid [9,10]. In the second category, both the interface and mesh in space move together keeping conformity in a body-fitted
manner. The arbitrary Lagrangian–Eulerian (ALE) approach [11,12] was introduced to handle the time derivative terms on
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the time-varying fluid domain. It prevents excessive mesh distortion comparing with the pure Lagrangian approach. The
capability to design high order methods makes methods of the second category of great interest for practical problems.

The ALE based FSI simulations are generally accomplished by using either partitioned or monolithic schemes. A mono-
lithic [13–16] approach assembles the fluid and structural equations into a single block and solves them simultaneously for
each iteration. These schemes lack the advantage of flexibility and modularity of using existing stable fluid or structural
solvers. However, they offer good numerical stability even for problems involving very strong added mass effects. In con-
trast, a partitioned approach solves the fluid and structural equations in a sequential manner, facilitating the coupling of the
existing fluid and structural program with minimal changes. This trait of the partitioned approach therefore makes itself an
attractive option from computational point of view.

Typically, partitioned staggered schemes [17] are classified as either strongly-coupled [18] or loosely-coupled [19,20].
Loosely-coupled schemes satisfy the interface velocity continuity and traction continuity conditions in a sequential manner.
These schemes often suffer from numerical instability and temporal inaccuracy caused by spurious energy production along
the interface due to the time lag [21,22], and special treatments are generally required to address these issues. A variety of
force corrections and structural predictors [19,23] are used to increase the numerical stability of loosely-coupled schemes.
Strongly-coupled schemes typically involve predictor–corrector sub-iterations to ensure the convergence of interface proper-
ties. However, this results in increased computational cost. In several applications such as, flow through blood vessels [24],
ocean current interactions with offshore risers [6], strongly-coupled schemes suffer from convergence issues due to strongly
predominant added mass effects [25].

The key objective of this paper is to present an efficient second-order scheme to solve the fully coupled FSI problems
which is stable for any mass density ratio. We further present an energy based stability proof for the proposed second order
scheme. The scheme is based on the combined field formulation proposed in [26] which uses the ALE description for the
fluid and Lagrangian description for the solid. The combined field scheme presented in [26] is first-order accurate and is
motivated by the one-fluid formulation [27] for studying multiphase problems. There is no systematic study on the effects
of mass ratio in the earlier work presented in [26].

The CFEI formulation is based on weak formulation of fluid–structure problem with properly chosen function spaces for
the unknown variables. Both governing equations for fluid and solid are written in terms of their velocities, respectively.
Solid position plays only a role of slave variable. The continuity of velocities across the fluid–structure interface is enforced
in the function spaces, while the continuity of traction across the interface is enforced in the weak formulation. The def-
inition of the function space for the velocities requires information on the solid position. Since the solid position is also
an unknown quantity, decoupling of the computations of the solid position and the remaining variables is performed in
this weak formulation. In the CFEI formulation, this requirement automatically leads to an explicit interface advancing for
updating the solid positions and handling mesh velocity in the ALE formulation of the Navier–Stokes equations. This explicit
advancing of the mesh velocity in turn requires an explicit treatment of the convective velocity in the quadratic term of the
Navier–Stokes equations to achieve a desired energy balance. The other velocity in the quadratic terms is treated implicitly
and this semi-implicit treatment is crucial for the stability proof as shown in [26]. Another important consequence of the
semi-implicit treatment is that the CFEI formulation only requires to solve a linear system of equations per time step.

The proposed CFEI scheme is unconditionally stable with respect to mass ratios with relatively lesser number of un-
knowns compared to the traditional monolithic schemes. The energy-based stability proof for the second-order fully discrete
scheme proposed in this paper relies heavily on the CFEI formulation and on the connections among the second-order ex-
trapolation formula, the backward differentiation, and the trapezoidal rule. The numerical scheme preserves the energy
decaying property for a fluid–structure system. The temporal accuracy of the CFEI scheme has been assessed with the aid
of 2D incompressible flow interacting with structure. We show the second-order temporal accuracy for a test problem on
elastic semi-circular cylinder and verify the precision with the benchmark results for the cylinder-elastic bar problem. Fur-
thermore, we use this CFEI scheme to study the flapping dynamics involving low mass density ratio and bending rigidity
modulus.

The content of this paper is organized as follows. In Section 2, we start with the governing equations used to model the
FSI problem and a review of the CFEI formulation has been presented. Section 3 presents the scheme with second-order
accuracy in time. The stability of the scheme is proved in Section 4. In Section 5, we present the convergence and verification
results. Section 6 presents the application of CFEI formulation to study the flapping dynamics of a thin structure in a uniform
axial flow. The major conclusions of this work are reported in Section 7.

2. Combined field with explicit advancing

Before the presentation of our second-order scheme, we provide for completeness a short description of the fluid–
structure system and the combined field formulation. The governing equations for the fluid are written in an ALE form
while the structural equation is formulated in a Lagrangian way.

2.1. Fluid–structure equations

Let Ω f(t) ⊂ R
d be a fluid domain at time t , where d is the space dimension. The motion of an incompressible viscous

fluid in Ω f(t) is governed by the following Navier–Stokes equations:
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