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This article describes a frame-invariant vector limiter for Flux-Corrected Transport (FCT)
numerical methods. Our approach relies on an objective vector projection, and, because of
its intrinsic structure, the proposed approach can be generalized with ease to higher-order
tensor fields.
The proposed concept is applied to nodal finite element formulations and the so-called
algebraic FCT paradigm, but the ideas pursued here are very general and also apply to
more general instantiations of flux-corrected transport.
Specifically, we consider the arbitrary Lagrangian–Eulerian (ALE) equations of compressible
inviscid flows. In addition to the geometric conservation law (GCL) and the local extreme
diminishing (LED) property of the original scalar limiters, the proposed approach ensures
frame invariance (objectivity) for vectors. Particularly, we use an ALE strategy based on a
two-stage, Lagrangian plus mesh remap (data transfer based on conservative interpolation),
in which remap and limiting are performed in a synchronized way. The proposed approach
is however of general applicability, is not limited to a specific ALE implementation, and can
easily be generalized to computations with standard (monolithic) ALE or Eulerian reference
frames.
The significance of the frame-invariant limiter for vectors is demonstrated in computations
of compressible materials under extreme load conditions. Extensive testing in two and
three dimensions demonstrates that the proposed limiter greatly enhances the robustness
and reliability of the existing methods under typical computational scenarios.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The present article describes a frame-invariant limiting strategy for vectors in arbitrary Lagrangian–Eulerian (ALE) com-
putations with nodal finite elements. Here, the frame invariance property or objectivity means that the formulation of the
method should remain unchanged under any arbitrary (possibly time-dependent) rigid transformation given by rotations
and translations (see for more details [1–3]).

In [4–6], frame invariance was found to be very important in designing stabilized methods for ALE computations. This
issue, however, has been long overlooked in the context of flux limiting, a procedure designed to enhance the nonlinear
stability of computational fluid dynamics solvers, without precluding their overall accuracy. A recent work in this direction
is by Luttwak and Falcovitz [7–9] in the context of slope limiters for finite volume methods. The authors would also like to
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point to recent work by Maire [10], in which it is recognized the importance of ensuring frame invariance in the construction
of finite volume methods for Lagrangian flow simulations, and the very recent work by Velechovský et al. [11] and Kuchařík
et al. [12], mostly aimed at defining limiting strategies that preserve certain flow symmetries (e.g., radial symmetry).

The present work, on the other hand, aims at designing frame-invariant limiters within the context of nodal finite
element methods for advection systems in general and remap algorithms in ALE computations in particular. Here remap
refers to a grid data transfer method based on conservative interpolation.

Algebraic FCT methods [13] were designed for nodal finite element computations, and were derived from the original
FCT algorithms [14,15]. These methods were originally designed for scalar problems in multiple dimensions using general
(unstructured) grids. Hence, for the sake of simplicity and without any ambiguity, algebraic FCT methods will be referred to
in what follows as FCT methods. We note that limiting for vector quantities remains an open question in the FCT community.

Common practice is to apply the FCT limiters only to scalars like density and energy (or pressure) [16], or apply them to
each component of a vector (for example, flow velocity or linear momentum) [13]. Both approaches have their drawbacks,
since, as shown in Section 4, applying limiters only to scalar variables like density and internal energy is not sufficient to
avoid spurious oscillations in kinetic and internal energy, and component-wise limiting of vector variables causes strong
mesh dependences in the overall solution. Specifically, these oscillations tend to occur near contact discontinuities across
which the magnitude of the tangential velocity has a large jump, or in high vorticity regions of the flow. These issues are
documented here in the context of ALE–Remap algorithms, but it is conceivable that also more standard ALE or Eulerian
algorithms suffer from the same problems.

These observations strongly suggest that limiters applied to vector fields (such as the flow velocity) should be considered
to enhance the robustness of the flow solver, but that component-by-component application of limiters is undesirable in
that it destroys the frame invariance properties of the overall method.

In this work, we develop a simple frame-invariant limiting strategy for vectors using nodal finite elements. The method-
ology is an extension of scalar limiting strategies. In particular, we first identify a vector field, termed as the projection
direction, to estimate at each node the direction along which the oscillations most likely occur. Next, we project the vector
field to be limited (specifically, velocity or momentum) along this projection direction. Finally, an FCT limiter analogous
to the one in [17] is applied to compute nodal limiter coefficients for this scalar field. We conclude by synchronizing the
limiters for all fields of interest in the computations. By design, this approach is provably frame-invariant as long as the
nodal projection direction constitutes a vector field (i.e., a frame-invariant quantity).

The effectiveness of our vector limiting strategy relies on the particular projection direction used. We propose two
strategies to compute the projection direction at each node, by either using the flow density gradient or the unit eigenvector
associated with the principal eigenvalue of the deviator of the symmetric gradient of the velocity (or any vector to be
limited). The former is especially effective for shock hydrodynamics because the density gradient typically points in the
direction normal to shock fronts or contact discontinuities. The latter is of more general applicability, since it does not
require any information other than the vector itself and the mesh position.

The numerical performance of both approaches are demonstrated by extensive testing in two- and three-dimensional ex-
amples in the context of Lagrangian/ALE shock hydrodynamics, and compared against scalar and component-wise limiters.
To put into context these computational studies, the adopted flow solver is an ALE algorithm, composed of three stages, fol-
lowing an operator splitting procedure: A pure Lagrangian computation is first performed, then the nodes of the Lagrangian
mesh are repositioned to improve the overall grid quality and finally the numerical solution is transferred from the old
to the new grid. This last step is usually referred to as “remap” in Lagrangian/ALE shock hydrodynamics. More specifically,
the remap stage consists in transferring the numerical solution from a given mesh to a perturbed mesh with the same
connectivity but different node locations (cf. ALE algorithms based on reconnection [18] or edge-swapping [19], which both
change the mesh connectivity). At each time step, the remap procedure can be interpreted as an advection problem, solved
with an algebraic flux-corrected transport (FCT) method [13,20–25]. Our approach incorporates the geometric conservation
law (GCL) [26] and inherits conservation and local extremum diminishing (LED) [27] properties that are typical of FCT
schemes.

We point out that the algebraic FCT strategy used in this work is not the only possible option, and alternative strategies
for unstructured FCT computations on nodal (dual volume) discretizations can be used in the present context.

The remainder of the paper is organized as follows: Section 2 briefly reviews the arbitrary Lagrangian–Eulerian remap
using nodal finite elements and the FCT limiters for scalar fields during this procedure; the frame-invariant property of
the whole procedure is studied in Section 3, which also contains the two new invariant strategies, and a mathematical
proof of invariance (objectivity). The numerical performances of the proposed vector limiters are compared to scalar and
component-wise limiters by solving two- and three-dimensional examples in Section 4. Conclusions are summarized in
Section 5.

2. General concepts in arbitrary Lagrangian–Eulerian remap

This section reviews the principles of arbitrary Lagrangian–Eulerian remap, the finite element analysis of the remap
problem using piecewise linear elements, and algebraic flux-correction with Zalesak limiter for remap of scalar fields. More
details can be found in previous work [17]: Only the key concepts and equations necessary for the frame-invariance analysis
conducted in the next section are presented here.
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