
Journal of Computational Physics 262 (2014) 58–71

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Time integration for diffuse interface models for two-phase
flow

Sebastian Aland

Institut für wissenschaftliches Rechnen, TU Dresden, 01062 Dresden, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 June 2013
Received in revised form 21 November 2013
Accepted 29 December 2013
Available online 7 January 2014

Keywords:
Time integration
Diffuse interface model
Dominant surface tension
Time stability
CFL condition
Navier–Stokes
Cahn–Hilliard
Linearization

We propose a variant of the θ-scheme for diffuse interface models for two-phase flow,
together with three new linearization techniques for the surface tension. These involve
either additional stabilizing force terms, or a fully implicit coupling of the Navier–Stokes
and Cahn–Hilliard equation.
In the common case that the equations for interface and flow are coupled explicitly, we
find a time step restriction which is very different to other two-phase flow models and
in particular is independent of the grid size. We also show that the proposed stabilization
techniques can lift this time step restriction.
Even more pronounced is the performance of the proposed fully implicit scheme which is
stable for arbitrarily large time steps. We demonstrate in a Taylor-flow application that this
superior coupling between flow and interface equation can decrease the computation time
by several orders of magnitude.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The numerical simulation of two-phase flows has reached some importance in microfluidic applications. In the last
decade, diffuse interface (or phase-field) models have become a valuable alternative to the more established sharp inter-
face methods (e.g. Level-Set, Arbitrary Lagrangian–Eulerian, Volume-Of-Fluid). The advantages of diffuse interface methods
include the possibility to easily handle moving contact lines and topological transitions as well as the fact that they do
not require any reinitialization or convection stabilization. The corresponding equations involve a Navier–Stokes (NS) equa-
tion coupled to a convective Cahn–Hilliard (CH) equation. A lot of efficient spacial discretization techniques and solvers for
these equations have been proposed (e.g. [20]). However, not much work has been done on time integration strategies and
efficient coupling between the NS and the CH equation, which we will address in this paper.

But at first, let us introduce the diffuse interface method more carefully. The method was originally developed to model
solid–liquid phase transitions, see e.g. [6,14,26]. The interface thereby is represented as a thin layer of finite thickness and
an auxiliary function, the so-called phase field, is used to indicate the phases. The phase field function varies smoothly
between distinct values in both phases and the interface can be associated with an intermediate level set of the phase field
function. Diffuse interface approaches for mixtures of two immiscible, incompressible fluids lead to the NS–CH equations
and have been considered by several authors, see e.g. [19,15,20,11]. The simplest model reads:

ρ(c)
(
∂tu + (u · ∇)u

) = −∇p + ∇ · (ν(c)D(u)
) + F + μ∇c, (1)

∇ · u = 0, (2)
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Fig. 1. Evolution of a semi-circular bubble under the diffuse interface model with too large time steps. Left: initial shape; Right: Evolved shape after ten
time steps.

∂tc + u · ∇c = ∇ · (M(c)∇μ
)
, (3)

μ = σ̃ ε−1W ′(c) − σ̃ ε�c, (4)

in the domain Ω . Here u, p, c and μ are the velocity, pressure, phase field variable and chemical potential, respectively.
The function W (c) is a double well potential, here we use W = 1/4(c2 − 1)2 which ensures that c ≈ ±1 in two fluid phases,
respectively.

The function M(c) is a mobility, ε defines a length scale over which the interface is smeared out. In general for the
diffuse interface fluid method, it is desirable to keep M small such that the phase field function is primarily moved by
advection. At the same time the mobility needs to be big enough to ensure that the interface profile stays accurately
modeled and the interface thickness is approximately constant. Furthermore, D(u) = ∇u + ∇uT is the strain tensor, ρ(c),
ν(c) and F are the (phase dependent) density, viscosity and body force. The parameter σ̃ is a scaled surface tension which is
related to the physical surface tension by σ̃ = σ 3

2
√

2
. There are efficient solvers available to discretize and solve Eqs. (1)–(4)

in space (see e.g. [20]).
Surface tension is a major component of all multiphase fluid models and hence various spatial discretizations of the

surface tension force for diffuse–interface models have been proposed (e.g. [22]). The surface tension force μ∇c introduces
a strong coupling between the NS equation providing the flow field and the CH equation evolving the phase field. This is
very similar to sharp interface models for two-phase flow where the same interface-to-flow coupling introduces a severe
time step restriction of the form [7,9]:

τ < Cρ
1
2 h

3
2 σ− 1

2 . (5)

Here, τ is the maximum time step size, ρ the average density of both fluids and h the grid size. The above CFL-like
restriction is particularly strong for large effective surface tensions, e.g. when small physical length scales are considered. It
is usually assumed that this restriction also holds for diffuse interface models (e.g. in [21]). In Section 6.1 we will show that
this assumption is wrong.

However, also for diffuse interface models there is some time step restriction which can make computations extremely
costly, even in cases when the interface is supposed to hardly move. Fig. 1 shows such a case of a perfectly circular interface,
which is almost stationary. However, if too big time steps are chosen, even such an equilibrated surface will start to wobble
and finally break up. In sharp interface models, there are techniques to overcome such time step restrictions [17]. To the
best of the authors’ knowledge there is no such technique available for diffuse interface models yet. We will develop tech-
niques to improve the coupling between the NS and the CH equations, which will turn out to lift the time step restrictions
significantly.

Apart from increasing the computational performance, there is a second reason to develop better time integration
schemes for diffuse interface models. The simple time discretization schemes available often imply the need to stabilize
the system by choosing a relatively high CH mobility. But this high artificial diffusion perturbs the simulation results since
matched asymptotic analysis shows the convergence of diffuse–interface methods toward the sharp interface equations only
for small CH mobility [1]. Therefore better time integration strategies would not only speed-up the simulations but also
allow to take smaller (more physical) CH mobility and thus improve the accuracy of diffuse–interface methods.

The structure of the remaining paper is as follows. Sections 2 and 3 will introduce a simple variant of the θ scheme as
well as a block Gauss–Seidel coupling strategy. The main attention is given to Section 4 where some new improved coupling
techniques for diffuse interface models are presented. The solution of the resulting systems is discussed in Section 5. In
Section 6 we perform numerical tests. In particular a CFL-condition for diffuse interface methods is numerically derived and
it is shown that the new proposed coupling methods can, for some problems, result in an extreme gain of performance.
Finally, conclusions are drawn in Section 7.

2. Time discretization: a variant of the θ -scheme

In this section we adopt the well-known θ -scheme for the time discretization of the NS–CH equations. Let the time
interval [0, T ] be divided in N subintervals of size τn , n = 1 . . . N . We define the discrete time derivative of a (solution)
variable v to be dt vn+1 := (vn+1 − vn)/τn , where the upper index denotes the time step number. For a shorter notation we
introduce
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