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A stable high-order accurate finite difference method for the time-dependent Dirac
equation is derived. Grid-convergence studies in 1-D and 3-D corroborate the analysis.
The method is applied to time-resolved quantum tunneling where a comparison with the
solution to the time-dependent Schrödinger equation in 1-D illustrates the differences
between the two equations. In contrast to the conventional tunneling probability decay
predicted by the Schrödinger equation, the Dirac equation exhibits Klein tunneling. Solving
the time-dependent Dirac equation with a step potential in 3-D reveals that particle spin
affects the tunneling process. The observed spin-dependent reflection allows for a new
type of spin-selective measurements.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Dirac equation [8] is a wave equation from the field of quantum dynamics. Unlike the Schrödinger equation, it is
consistent with the theory of special relativity. Relativistic effects are prominent for instance in heavy elements, where
the Dirac equation correctly predicts the contraction of inner orbitals and the expansion of outer orbitals. In addition to
incorporating relativity for electrons in heavy elements, the Dirac equation describes particle spin, which in contrast needs
to be prescribed in the Schrödinger equation. Thus, the Dirac equation fully accounts for the fine structure in hydrogen,
whereas a relativistic expansion of the Schrödinger equation only captures part of the effect. The arguably most striking
difference between the two models, however, is related to quantum tunneling. The Schrödinger equation predicts that
particles can tunnel through classically insurmountable potential barriers, but the tunneling probability decays exponentially
inside the classically forbidden region. In [19] Klein presented the surprising result that, according to the Dirac equation,
the tunneling probability tends to a non-zero limit as the barrier height goes to infinity—a phenomenon known as Klein
tunneling. Yet another important feature of the Dirac equation is that it implies the existence of antiparticles.

In recent years, the Dirac equation has successfully been used to model systems which are not intrinsically relativistic,
such as graphene [18]. Here the equation is applied phenomenologically and the speed of light is replaced by the saturation
velocity of the electrons in the material, the Fermi velocity.

Mathematically, the Dirac equation is a first order hyperbolic system of four equations with complex coefficients. In
contrast, the Schrödinger equation is a second order scalar equation that is neither hyperbolic nor parabolic. Hence, al-
though describing similar physics, the two equations have quite different numerical properties. The Schrödinger equation is
stiff—the numerical eigenvalues scale as h−2, where h is the grid-spacing—and requires careful treatment of the numerical
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time-integration. For the Dirac equation, on the other hand, an explicit Runge–Kutta time integrator is generally sufficiently
efficient.

Efficient simulation of wave propagation problems generally requires numerical techniques capable of accurately prop-
agating disturbances over long distances. It is well known that high-order finite difference methods (HOFDMs) are ideally
suited for problems of this type (see the pioneering paper by Kreiss and Oliger [22]). Not all high-order spatial operators are
applicable, however. For example, schemes that are G–K–S stable [11], while being convergent to the true solution as h → 0,
may exhibit nonphysical solution growth in time [5], thereby limiting their efficiency for longtime simulations. Thus, it is
imperative to use HOFDMs that do not allow nonphysical solution growth in time—a property termed “strict stability” [10].
Deriving a strictly stable, accurate, and conservative HOFDM is a significant challenge that has received considerable past
attention. (For examples, see [24,40,38,1,3,13,39,12].)

A robust and well-proven high-order finite difference methodology that ensures the strict stability of time-dependent
partial differential equations is the summation-by-parts–simultaneous approximation term (SBP-SAT) method. The SBP-SAT
method combines semi-discrete operators that satisfy a summation-by-parts (SBP) formula [21] with physical boundary
conditions imposed using the simultaneous approximation term (SAT) method [5]. Examples of the SBP-SAT approach can
be found in [33–35,27,29,30,36,26,41,23,7,28,15,14,17].

An added benefit of the SBP-SAT method is that it naturally extends to multi-block geometries while retaining the
essential single-block properties: strict stability, accuracy, and conservation [6]. Thus, problems involving complex domains
or non-smooth geometries are easily amenable to the approach. References [26,29,16,25] report applications of the SBP-SAT
method to problems involving nontrivial geometries.

In this paper we shall apply the SBP-SAT method to the Dirac equation and study time-resolved Klein tunneling numeri-
cally. Applications of the SBP-SAT method to first order hyberbolic systems with real coefficients, such as the Euler equations,
Maxwell’s equations, and the elastic wave equation, have been reported in the literature on several occasions. However, the
complex coefficients in the Dirac equation necessitate a slight generalization of the method, in particular when boundary
and interface conditions are considered. To the best of our knowledge, this is the first time stable high-order accurate finite
difference approximations have been applied to the Dirac equation or similar hyperbolic systems with complex coefficients.

In [4] a split operator fast Fourier transform technique was used to solve the Dirac equation and study Klein tunneling
in 1-D. There, smooth potentials were considered. The potential step was modeled by a smoothed step function whose
turn-on length was successively decreased to approximate a discontinuous potential. A drawback with this approach is that
the rapid turn-on must be resolved, which leads to a large number of grid points in space. In this study, we shall instead
use a truly discontinuous potential. As we will demonstrate in a convergence study, the discontinuity must be treated with
a multi-block interface to preserve high-order accuracy. With the present SBP-SAT method, no extra spatial resolution is
required close to the discontinuity.

To elucidate the difference between the Dirac and Schrödinger equations, we shall compare the solutions to the two
models for a tunneling problem in 1-D. By varying the energy of the incoming particle, we can quantify relativistic effects.
We shall then proceed to study how particle spin affects time-resolved Klein tunneling in 3-D.

The rest of the paper is organized as follows: The Dirac equation is introduced in Section 2. In Section 3 we introduce
the SBP-SAT method and apply it to the Dirac equation in 1-D, including boundary and interface conditions. The extension
to 3-D is performed in Section 4. The Schrödinger equation is introduced in Section 5. In Section 6 we verify accuracy and
stability by numerical studies in 1-D. We also compare the Dirac and Schrödinger equations for the tunneling problem in
1-D. In Section 7 we verify the accuracy properties of the 3-D scheme against an analytical solution and investigate how
particle spin affects Klein tunneling in 3-D. Section 8 summarizes the work.

2. The Dirac equation

The Dirac equation for a spin- 1
2 particle can be written in the form

ih̄ψ t = Hψ, (1)

where the wave function ψ is a vector with four components and h̄ = 1.055 · 10−34 Js is the reduced Planck constant. In
the case of a particle influenced by an electric potential U , the Hamiltonian operator H is given by

Hψ = (
c �α · p̂ + mc2β + qU

)
ψ, (2)

where c is the speed of light (c = 2.998 · 108 m/s) and m and q are the mass and electric charge of the particle. Henceforth,
we shall assume that the particle in question is an electron. Thus we will use the electron mass (m = 9.109 · 10−31 kg) and
the negative elementary charge (q = −1.602 · 10−19 C). The momentum operator p̂ is given by

p̂ = −ih̄∇. (3)

The operators β and �α are defined as

β =
⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠
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