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We propose new collocation methods for phase-field models. Our algorithms are based on
isogeometric analysis, a new technology that makes use of functions from computational
geometry, such as, for example, Non-Uniform Rational B-Splines (NURBS). NURBS exhibit
excellent approximability and controllable global smoothness, and can represent exactly
most geometries encapsulated in Computer Aided Design (CAD) models. These attributes
permitted us to derive accurate, efficient, and geometrically flexible collocation methods for
phase-field models. The performance of our method is demonstrated by several numerical
examples of phase separation modeled by the Cahn–Hilliard equation. We feel that our
method successfully combines the geometrical flexibility of finite elements with the
accuracy and simplicity of pseudo-spectral collocation methods, and is a viable alternative
to classical collocation methods.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The Cahn–Hilliard equation is a central model in nonlinear interface dynamics [5] and pattern formation [66]. It was
derived about fifty years ago as a model for phase separation of immiscible fluids [23,24]. Since then, it has been applied
to a variety of physical problems, including planet formation [73], microstructure evolution of binary mixtures [2,3,26]
and phase separation of polymer blends [27]. The Cahn–Hilliard equation is also one of the simplest equations that can
model stable co-existence of two phases and, as such, is the basis for various multiphase flow theories [31,32,60,63]. Even
more important is the fact that the ideas behind the Cahn–Hilliard equation have given rise to a new class of mathemat-
ical models termed phase-field models [40]. These models treat the interfaces as diffuse, track their dynamical evolution,
and encode the interfacial physics at once. Phase-field models have had a significant impact on condensed matter physics
[37,38], fluid mechanics [16,45,46], and solid mechanics [20,64,65]. Since the numerical challenges faced when dealing with
phase-field equations are common to many different models, we feel that studying efficient and accurate algorithms for the
Cahn–Hilliard equation is a significant goal in computational physics.

The Cahn–Hilliard model is a nonlinear partial differential equation that involves fourth-order derivatives in space. Typi-
cal solutions to the equation include thin layers that evolve dynamically through the computational domain. The length scale
of these layers is given by a small parameter that multiplies the fourth-order derivative, making the problem singularly per-
turbed. All these features make the numerical approximation of the Cahn–Hilliard equation a significant challenge. Although,
new finite element methods are being proposed to solve the Cahn–Hilliard equation [44,71,75], collocation methods con-
tinue to be the standard methodology for computational phase field modeling. The two most representative examples of
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collocation methods for phase field models are the finite difference method [12,25,52,70] and spectral methods [12,33,54,
69,72].

Most work on collocation methods for the Cahn–Hilliard equation has been focused on the development of algorithms to
study the structure of the spatial patterns and free-energy evolution in extended systems, like in the spirit of the problem
of isotropic turbulence decay in fluid mechanics. It is, however, becoming clear that technological applications will demand
accurate and robust algorithms that can handle complicated geometries and boundary conditions (a significant example has
been recently presented in [4]). This paper constitutes a first step in this direction. We propose a new collocation method
for the Cahn–Hilliard equation that is fast, accurate, robust, geometrically flexible, and can handle a variety of different
boundary conditions.

Our collocation scheme is based on IsoGeometric Analysis (IGA) [28,57]. IGA is a computational technology that uses
functions from computational geometry to represent both the solution and the domain of a boundary-value problem. The
most frequently utilized functions are Non-Uniform Rational B-Splines (NURBS) [29,57] and T-Splines [13] which are widely
used in computational geometry and design. The first applications of IGA were within the framework of finite element
discretizations in which NURBS replaced the standard piece-wise polynomials, giving rise to new and more accurate dis-
cretizations on a per-degree-of-freedom basis [10,14,15,21,22,30,35,39,50,58,59,61,62,67]. In fact, IGA is a generalization of
finite elements because NURBS are a superset of piece-wise polynomials. However, IGA offers new possibilities not available
in classical finite elements [56], such as, for example, the straightforward generation of basis functions of arbitrarily high
global smoothness. Within the context of geometrically flexible methods, this seems to be a unique attribute of IGA with
profound implications on the accuracy of the discretization [1,17,29,42]. Additionally, the possibility of generating arbitrarily
smooth basis functions on complicated domains opens the door to geometrically flexible collocation methods [8], which
have been already successfully applied in the fields of elastostatics and explicit elastodynamics [9], as well as for the de-
velopment of innovative structural elements [11,18]. A detailed study on the advantages of isogeometric collocation over
Galerkin approaches is provided by [68]. In that paper, the authors show the superior behavior, in terms of accuracy-to-
computational-time ratio, attained by collocation with respect to Galerkin, in particular for higher order approximations.
Although this study was performed for second-order partial-differential equations, we expect that similar advantages can
be achieved also for higher-order equations, like those emanating from the phase-field theory.1 Moreover, in the same pa-
per, the authors introduce and analyze adaptive isogeometric collocation methods based on local hierarchical refinement of
NURBS.

Here we use these ideas to derive new collocation methods for phase-field models. The numerical examples in this
paper show that our algorithms are very efficient, and seem to be a successful combination of the geometrical flexibility of
classical finite element methods and the accuracy, efficiency, and simplicity of pseudo-spectral collocation methods.

The outline of this paper is as follows: We introduce the Cahn–Hilliard equation in Section 2. Our numerical formulation
is presented in Section 3. Section 4 illustrates, with several numerical examples, the efficiency, accuracy, and geometrical
flexibility of our algorithm. We draw conclusion in Section 5.

2. The Cahn–Hilliard equation

We present the Cahn–Hilliard equation in the context of isotropic and isothermal phase separation of immiscible fluids.
Within this simplified setting, the thermodynamic state of the mixture is defined by an order parameter u of the mass
fraction. The assumption of an isothermal system indicates that the relevant thermodynamic potential is a free energy,
which in the context of two-phase immiscible mixtures is called Ginzburg–Landau free energy.

2.1. Ginzburg–Landau free energy

Let V be an open subset of R
d , where d is the spatial dimension. The Ginzburg–Landau free energy is defined as the

functional G : H1(V ) �→R which takes the form

G[u] =
∫
V

(
F (u) + ε2

2
|∇u|2

)
dV (1)

where H1 is the Sobolev space of square integrable functions with square integrable first derivatives. Following the inter-
pretation of Cahn and Hilliard [23,24], F is the free energy of a homogeneous system and the gradient term accounts for
the interfacial free energy. Among the various possibilities for the homogeneous free energy F , we take the simple form

F (u) = α

4

(
u2 − β

α

)2

(2)

This function is non-convex and presents a double well structure with two local minima located at u = −√
β/α and u =

+√
β/α, which are called the binodal points.

1 A detailed study along these lines would be surely interesting, but it is beyond the scope of this paper and will be the subject of future research.
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