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Every physical phenomenon can be described by multiple models with varying degrees
of fidelity. The computational cost of higher fidelity models (e.g., molecular dynamics
simulations) is invariably higher than that of their lower fidelity counterparts (e.g.,
a continuum model based on differential equations). While the former might not be
suitable for large-scale simulations, the latter are not universally valid. Hybrid algorithms
provide a compromise between the computational efficiency of a coarse-scale model and
the representational accuracy of a fine-scale description. This is achieved by conducting
a fine-scale computation in subdomains where it is absolutely required (e.g., due to a
local breakdown of a continuum model) and coupling it with a coarse-scale computation
in the rest of a computational domain. We analyze the effects of random fluctuations
generated by the fine-scale component of a nonlinear hybrid on the hybrid’s overall
accuracy and stability. Two variants of the time-dependent Ginzburg–Landau equation
(GLE) and their discrete representations provided by a nearest-neighbor Ising model serve
as a computational testbed. Our analysis shows that coupling these descriptions in a
one-dimensional simulation leads to erroneous results. Adding a random source term to
the GLE provides accurate prediction of the mean behavior of the quantity of interest
(magnetization). It also allows the two GLE variants to correctly capture the strength of
the microscale fluctuations. Our work demonstrates the importance of fine-scale noise in
hybrid simulations, and suggests the need for replacing an otherwise deterministic coarse-
scale component of the hybrid with its stochastic counterpart.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Numerical modeling of complex nonlinear systems requires the development of multi-algorithm computational solvers
capable of handling a wide range of spatial and/or temporal scales. While coarse-scale models are more computationally
efficient than their fine-scale counterparts, they are not universally valid. For instance, continuum-scale finite element mod-
els of crack propagation break down near a crack’s tip [1], and macroscopic (Darcy-scale) models of flow and transport in
porous media break down for localized phenomena with high pore-scale gradients [2–4]. Standard coarse-scale models also
fail to capture the effects of spontaneous microscale fluctuations on macroscopic behavior, such as spontaneous formation
of ordered spatial concentration patterns in an unstirred chemical medium [5].

Fine-scale algorithms (e.g., molecular dynamics/quantum tight-binding and pore-scale simulations in the first and second
examples, respectively) can model such processes, but their high computational cost renders them impractical for mod-
eling large-scale problems. Hybrid algorithms, which are also referred to as algorithm refinement, employ such fine-scale
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models only in subdomains wherein their coarse-scale counterparts break down, potentially yielding a significant reduc-
tion in computational cost [6]. With a few exceptions [7,8], coupling of the fine- and coarse-scale components of a hybrid
requires multiple iterations to ensure the continuity of state variables and their fluxes at the interface between the two
components. Design and computationally efficient implementation of such coupling procedures remain a key challenge in
hybrid modeling.

Stochastic fluctuations generated by a hybrid’s fine-scale (particle-based) component exacerbate this task [9]. Averaging
out this noise (i.e., coupling averaged quantities such as particle density and mass flux to their counterparts computed with
a coarse-scale deterministic component) is adequate for computing the mean behavior of linear systems, but artificially re-
duces the fluctuation variance in the particle region near the particle-continuum interface [10]. In weakly nonlinear systems,
such as the train model of viscous transport in gases, the averaging dampens the long-range correlations of velocity fluctu-
ations and “can lead to a greatly altered time-dependent behavior” [11]. A nonlinear hybrid model consisting of asymmetric
excluded random walk (the fine-scale component) and a viscous Burgers’ equation (the coarse-scale component) revealed
that the averaging tends to suppress the drift of shock location [12]. In each case, addition of a Gaussian white noise term
to the hybrid’s deterministic (coarse-scale) components corrected these shortcomings.

A proper treatment of noise is even more important in highly nonlinear systems, wherein even small changes in the
magnitude of microscopic fluctuations can significantly affect the macroscopic dynamics. In such systems, coupling the
averages of fine-scale quantities with their deterministic coarse-scale counterparts can lead to erroneous predictions of the
mean system behavior. The Ginzburg–Landau theory [13] provides an ideal setting to study noise propagation in hybrid
models, since it establishes a relationship between fine-scale (a nearest-neighbor Ising model with spin-flip dynamics) and
coarse-scale (a Ginzburg–Landau partial differential equation) representations of a highly nonlinear system. It can be used,
for example, to describe the evolution of (scalar) magnetization of a uniaxial ferromagnet to thermal equilibrium [14–16].

In Section 2 we formulate a nearest-neighbor Ising (NNI) model and two variants of the time-dependent Ginzburg–
Landau equations (GLEs). A hybrid algorithm coupling these two levels of description is discussed in Section 3. Simulation
results reported in Section 4 reveal that one has to add a random source term to the Ginzburg–Landau component of the
hybrid in order to correctly predict the mean and variance of the magnetization for a ferromagnet evolving to thermo-
dynamic equilibrium. This finding facilitates the analysis of noise propagation in the NNI–GLE hybrid by allowing one to
replace its NNI component with a stochastic Ginzburg–Landau equation (sGLE). A solution of the latter is presented in terms
of moment equations (deterministic equations describing the evolution of the mean and covariance of magnetization). The
main conclusions of our analysis are summarized in Section 5.

2. Two modeling scales in the Ginzburg–Landau theory

The dynamics of ferromagnetic systems can be described either microscopically with Ising models [17] or macroscop-
ically with the Ginzburg–Landau theory [15,16,18]. Both levels of description are formulated below in the context of the
magnetization of a one-dimensional (1D) ferromagnet.

2.1. Nearest-neighbor Ising models with spin-flip dynamics (NNIs)

Consider a ferromagnet whose atoms are arranged on a 1D lattice with sites i = 1, . . . , N . A microscopic representation
of this system is given by an Ising model with nearest-neighbor interactions [17]. It assumes that the spin si of the atom
at site i can be in one of the two states designated by si = ±1, and interacts only with its two adjacent spins. The N-spin
configuration s = {s1, . . . , sN} defines the ferromagnet’s state at time t; the joint probability of finding the ferromagnet in
state s at time t is denoted by P (s; t). Let s′ denote an N-spin configuration that differs from configuration s by the value of
a single spin s j . The kinetic nearest-neighbor Ising model with spin-flip dynamics [19] (NNI) defines the evolution of P (s; t)
as a solution of the master equation
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where w(s → s′) is the transition rate from state s to state s′ , and the summation is over all possible states s′ . Among the
plethora of suggested functional forms for the transition rate w we consider two. The first is the Suzuki–Kubo rate
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where λ−1 is the time scale of the spin-flip process that can depend both on the system temperature T and the spins
other than s j , β = 1/(kB T ) with kB denoting the Boltzmann constant, J is the spatially uniform exchange coupling energy
associated with the interaction between neighboring spins, and L j indicates summation over the nearest neighbors of s j .

The second alternative is the heat-bath rate
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