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We study the ability of high order numerical methods to propagate discrete waves at the
same speed as the physical waves in the case of the one-way wave equation. A detailed
analysis of the finite element method is presented including an explicit form for the
discrete dispersion relation and a complete characterisation of the numerical Bloch waves
admitted by the scheme. A comparison is made with the spectral element method and the
discontinuous Galerkin method with centred fluxes. It is shown that all schemes admit a
spurious mode. The spectral element method is always inferior to the finite element and
discontinuous Galerkin schemes; a somewhat surprising result in view of the fact that, in
the case of the second order wave equation, the spectral element method propagates waves
with an accuracy superior to that of the finite element scheme. The comparative behaviour
of the finite element and discontinuous Galerkin scheme is also somewhat surprising: the
accuracy of the finite element method is superior to that of the discontinuous Galerkin
method in the case of elements of odd order by two orders of accuracy, but worse, again
by two orders of accuracy, in the case of elements of even order.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and summary of main results

Consider the one-way wave equation for a given wave-speed c > 0,

∂t u + c∂xu = 0, x ∈R, t > 0 (1)

with suitable initial data. A key feature of the equation is the existence of non-trivial, spatially propagating solutions for
each given temporal frequency ω,

u(x, t) = eiωt U (x) (2)

where U (x) = e−ikx , k = ω/c. The relation between the wavenumber and the temporal frequency is known as the dispersion
relation for the continuous problem. The function U satisfies a Bloch wave condition

U (x + h) = λU (x), x ∈R, h ∈R (3)

where λ = e−ikh is the Floquet multiplier.
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Let Xh,N denote the space of continuous, piecewise polynomials of degree N on the grid hZ,

Xh,N = {
v ∈ C(R): v |(xm,xm+1)∈ PN , m ∈ Z

}
(4)

where xm = mh. A semi-discrete approximation of the one-way wave equation may be defined by seeking uh,N ∈ Xh,N such
that ∫

R

(∂t uh,N + c∂xuh,N)v dx = 0, v ∈ Xh,N (5)

along with appropriate initial conditions. A key issue [4] when assessing any spatial discretisation scheme for the one-way
wave equation is the existence of non-trivial Bloch wave solutions of the discrete problem (5). These solutions again take
the form (2),

uh,N(x, t) = eiωt Uh,N (x) (6)

with the essential difference that the function Uh,N must belong to the discrete space Xh,N , and satisfy a discrete Bloch
wave condition

Uh,N (x + h) = λh,N Uh,N (x), x ∈ R (7)

with the discrete Floquet multiplier λh,N depending on the mesh-size h and the polynomial degree N .
The ability of the numerical scheme to propagate waves in space faithful to the true propagating waves depends on the

accuracy with which the discrete Floquet multiplier approximates the true Floquet multiplier. The relative accuracy Rh,N of
the approximation is defined by

Rh,N = λ − λh,N

λ
(8)

and our aim is to study the behaviour of this ratio as ωh/c → 0, for any polynomial order N . Some authors prefer to
introduce a discrete wavenumber, kh,N , satisfying

e−ihkh,N = λh,N (9)

and to study the relative accuracy of the approximation k ≈ kh,N , where k = ω/c is the true wavenumber, given by

Eh,N = k − kh,N

k
. (10)

These measures are related in the case where k − kh,N is small as follows

Rh,N = e−ikh − e−ikh,N h

eikh
= 1 − e−i(kh,N −k)h ≈ −i(k − kh,N ) = −ikEh,N . (11)

As such, the choice of whether to study Rh,N or Eh,N is purely a matter of taste in the case where k−kh,N is small. However,
it should be borne in mind that the condition (9) does not define a unique value of kh,N . Care must be taken in selecting
the value of kh,N satisfying (9) appropriately in order to avoid drawing incorrect conclusions. Moreover, if k − kh,N is not
small, then there is no simple relation between Rh,N and Eh,N . For these reasons, our preference is to study the relative
accuracy of the discrete Floquet multiplier directly, since it is this quantity that appears in the Bloch wave condition and is
uniquely defined.

Our first result establishes an algebraic condition on the discrete Floquet multiplier in terms of the order N , the mesh-
size h and the wavenumber ω/c under which a non-trivial discrete Bloch wave may exist.

Theorem 1. There exists a non-trivial Bloch wave solution of problem (5) of the form

uh,N(x, t) = eiωt
∑
m∈Z

λm
h,Nφ(x − mh) (12)

where φ ∈ Xh,N , if and only if λh,N is a solution of the algebraic equation

v N(ωh/c)
(
λ − qN(ωh/c)

) + (−1)N v N(ωh/c)

(
1

λ
− qN(ωh/c)

)
= 0, (13)

where qN(Ω) = w N(Ω)/v N(Ω), v N(Ω) and w N(Ω) are defined in Theorem 4.

The function φ appearing in the Bloch wave expansion (12) is a piecewise polynomial supported on (−h,h) that depends
on the polynomial degree N and Ω = ωh/c. The function is constructed as part of the proof of Theorem 1 given in Section 3.
Fig. 1 shows the function in the case h = 1 and ω = 2c for polynomial degree N from 1 to 6.
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